Optimal lower bounds for eigenvalues of linear and nonlinear Neumann problems

Barbara Brandolini, Barbara Brandolini, Francesco Chiacchio, Cristina Trombetti

Risultato della ricerca: Articlepeer review

16 Citazioni (Scopus)

Abstract

In this paper we prove a sharp lower bound for the first non-trivial Neumann eigenvalue μ1(Ω) for the p-Laplace operator (p < 1) in a Lipschitz bounded domain Ω in Rn. Our estimate does not require any convexity assumption on Ω and it involves the best isoperimetric constant relative to Ω. In a suitable class of convex planar domains, our bound turns out to be better than the one provided by the Payne-Weinberger inequality.
Lingua originaleEnglish
pagine (da-a)31-45
Numero di pagine15
RivistaPROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS
Volume145
Stato di pubblicazionePublished - 2015

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2600???

Cita questo