Abstract
This paper provides a mean field game theoretic interpretation of opinion dynamics and stubbornness. The model describes a crowd-seeking homogeneous population of agents, under the influence of one stubborn agent. The game takes on the form of two partial differential equations, the Hamilton-Jacobi-Bellman equation and the Kolmogorov-Fokker-Planck equation for the individual optimal response and the population evolution, respectively. For the game of interest, we establish a mean field equilibrium where all agents reach epsilon-consensus in a neighborhood of the stubborn agent's opinion.
Lingua originale | English |
---|---|
Pagine | 2519-2524 |
Numero di pagine | 6 |
Stato di pubblicazione | Published - 2013 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2200.2207???
- ???subjectarea.asjc.2600.2611???
- ???subjectarea.asjc.2600.2606???