On the tensor degree of finite groups

    Risultato della ricerca: Articlepeer review

    Abstract

    We study the number of elements $x$ and $y$ of a finite group $G$ such that $x \otimes y= 1_{_{G \otimes G}}$ in the nonabelian tensor square $G \otimes G$ of $G$. This number, divided by $|G|^2$, is called the tensor degree of $G$ and has connection with the exterior degree, introduced few years ago in [P. Niroomand and R. Rezaei, On the exterior degree of finite groups, Comm. Algebra 39 (2011), 335--343]. The analysis of upper and lower bounds of the tensor degree allows us to find interesting structural restrictions for the whole group.
    Lingua originaleEnglish
    Numero di pagine10
    RivistaArs Combinatoria
    Volumein stampa
    Stato di pubblicazionePublished - 2013

    Fingerprint Entra nei temi di ricerca di 'On the tensor degree of finite groups'. Insieme formano una fingerprint unica.

    Cita questo