On the size of transducers for bidirectional decoding of prefix codes

Risultato della ricerca: Article

2 Citazioni (Scopus)

Abstract

In a previous paper [L. Giambruno and S. Mantaci, Theoret. Comput. Sci. 411 (2010) 1785–1792] a bideterministic transducer is defined for the bidirectional deciphering of words by the method introduced by Girod [IEEE Commun. Lett. 3 (1999) 245–247]. Such a method is defined using prefix codes. Moreover a coding method, inspired by the Girod’s one, is introduced, and a transducer that allows both right-to-left and left-to-right decoding by this method is defined. It is proved also that this transducer is minimal. Here we consider the number of states of such a transducer, related to some features of the considered prefix code X. We find some bounds of such a number of states in relation with different notions of “size” of X. In particular, we give an exact formula for the number of states of transducers associated to maximal prefix codes. We moreover consider two special cases of codes: maximal uniform codes and a class of codes, that we name string-codes. We show that they represent, for maximal codes, the extreme cases with regard to the number of states in terms of different sizes. Moreover we prove that prefix codes corresponding to isomorphic trees have transducers that are isomorphic as unlabeled graphs.
Lingua originaleEnglish
pagine (da-a)315-328
Numero di pagine14
RivistaRAIRO. INFORMATIQUE THEORIQUE ET APPLICATIONS
Volume46
Stato di pubblicazionePublished - 2012

Fingerprint

Prefix
Transducer
Decoding
Transducers
Isomorphic
Extremes
Coding
Strings
Graph in graph theory

All Science Journal Classification (ASJC) codes

  • Software
  • Mathematics(all)
  • Computer Science Applications

Cita questo

@article{93bfe2efcb574db2ae91c6764cf5133a,
title = "On the size of transducers for bidirectional decoding of prefix codes",
abstract = "In a previous paper [L. Giambruno and S. Mantaci, Theoret. Comput. Sci. 411 (2010) 1785–1792] a bideterministic transducer is defined for the bidirectional deciphering of words by the method introduced by Girod [IEEE Commun. Lett. 3 (1999) 245–247]. Such a method is defined using prefix codes. Moreover a coding method, inspired by the Girod’s one, is introduced, and a transducer that allows both right-to-left and left-to-right decoding by this method is defined. It is proved also that this transducer is minimal. Here we consider the number of states of such a transducer, related to some features of the considered prefix code X. We find some bounds of such a number of states in relation with different notions of “size” of X. In particular, we give an exact formula for the number of states of transducers associated to maximal prefix codes. We moreover consider two special cases of codes: maximal uniform codes and a class of codes, that we name string-codes. We show that they represent, for maximal codes, the extreme cases with regard to the number of states in terms of different sizes. Moreover we prove that prefix codes corresponding to isomorphic trees have transducers that are isomorphic as unlabeled graphs.",
author = "Laura Giambruno and Sabrina Mantaci",
year = "2012",
language = "English",
volume = "46",
pages = "315--328",
journal = "RAIRO - Theoretical Informatics and Applications",
issn = "0988-3754",
publisher = "EDP Sciences",

}

TY - JOUR

T1 - On the size of transducers for bidirectional decoding of prefix codes

AU - Giambruno, Laura

AU - Mantaci, Sabrina

PY - 2012

Y1 - 2012

N2 - In a previous paper [L. Giambruno and S. Mantaci, Theoret. Comput. Sci. 411 (2010) 1785–1792] a bideterministic transducer is defined for the bidirectional deciphering of words by the method introduced by Girod [IEEE Commun. Lett. 3 (1999) 245–247]. Such a method is defined using prefix codes. Moreover a coding method, inspired by the Girod’s one, is introduced, and a transducer that allows both right-to-left and left-to-right decoding by this method is defined. It is proved also that this transducer is minimal. Here we consider the number of states of such a transducer, related to some features of the considered prefix code X. We find some bounds of such a number of states in relation with different notions of “size” of X. In particular, we give an exact formula for the number of states of transducers associated to maximal prefix codes. We moreover consider two special cases of codes: maximal uniform codes and a class of codes, that we name string-codes. We show that they represent, for maximal codes, the extreme cases with regard to the number of states in terms of different sizes. Moreover we prove that prefix codes corresponding to isomorphic trees have transducers that are isomorphic as unlabeled graphs.

AB - In a previous paper [L. Giambruno and S. Mantaci, Theoret. Comput. Sci. 411 (2010) 1785–1792] a bideterministic transducer is defined for the bidirectional deciphering of words by the method introduced by Girod [IEEE Commun. Lett. 3 (1999) 245–247]. Such a method is defined using prefix codes. Moreover a coding method, inspired by the Girod’s one, is introduced, and a transducer that allows both right-to-left and left-to-right decoding by this method is defined. It is proved also that this transducer is minimal. Here we consider the number of states of such a transducer, related to some features of the considered prefix code X. We find some bounds of such a number of states in relation with different notions of “size” of X. In particular, we give an exact formula for the number of states of transducers associated to maximal prefix codes. We moreover consider two special cases of codes: maximal uniform codes and a class of codes, that we name string-codes. We show that they represent, for maximal codes, the extreme cases with regard to the number of states in terms of different sizes. Moreover we prove that prefix codes corresponding to isomorphic trees have transducers that are isomorphic as unlabeled graphs.

UR - http://hdl.handle.net/10447/75585

UR - http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8553465

M3 - Article

VL - 46

SP - 315

EP - 328

JO - RAIRO - Theoretical Informatics and Applications

JF - RAIRO - Theoretical Informatics and Applications

SN - 0988-3754

ER -