Abstract
The distance of an almost constant mean curvature boundary from a finite family of disjoint tangent balls with equal radii is quantitatively controlled in terms of the oscillation of the scalar mean curvature. This result allows one to quantitatively describe the geometry of volume-constrained stationary sets in capillarity problems.
Lingua originale | English |
---|---|
pagine (da-a) | 665-716 |
Numero di pagine | 52 |
Rivista | Communications on Pure and Applied Mathematics |
Volume | 70 |
Stato di pubblicazione | Published - 2017 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2600???
- ???subjectarea.asjc.2600.2604???