Abstract
A non-compact polyhedron P is Tucker if, for any compact subset K ⊂ P, the fundamental group π 1(P − K) is finitely generated. The main result of this note is that a manifold which is proper homotopy equivalent to a Tucker polyhedron is Tucker. We use Poenaru’s theory of the equivalence relations forced by the singularities of a non-degenerate simplicial map
Lingua originale | English |
---|---|
pagine (da-a) | 571-576 |
Numero di pagine | 6 |
Rivista | Acta Mathematica Sinica |
Volume | 23 |
Stato di pubblicazione | Published - 2007 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2600???
- ???subjectarea.asjc.2600.2604???