On the cardinality of almost discretely Lindelof spaces

Santi Domenico Spadaro, Santi Spadaro, Angelo Bella

Risultato della ricerca: Articlepeer review

14 Citazioni (Scopus)

Abstract

A space is said to be "almost discretely Lindelöf" if every discrete subset can be covered by a Lindelöf subspace. Juhász, Tkachuk and Wilson asked whether every almost discretely Lindelöf first-countable Hausdorff space has cardinality at most continuum. We prove that this is the case under 2<= (which is a consequence of Martin's Axiom, for example) and for Urysohn spaces in ZFC, thus improving a result by Juhász, Soukup and Szentmiklóssy. We conclude with a few related results and questions.
Lingua originaleEnglish
pagine (da-a)345-353
Numero di pagine9
RivistaMONATSHEFTE FÜR MATHEMATIK
Volume186
Stato di pubblicazionePublished - 2018

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2600???

Fingerprint

Entra nei temi di ricerca di 'On the cardinality of almost discretely Lindelof spaces'. Insieme formano una fingerprint unica.

Cita questo