On the Almost Everywhere Convergence of Multiple Fourier-Haar Series

Francesco Tulone, Giorgi Oniani

Risultato della ricerca: Articlepeer review

Abstract

The paper deals with the question of convergence of multiple Fourier-Haar series with partial sums taken over homothetic copies of a given convex bounded set W⊂R+n containing the intersection of some neighborhood of the origin with R+n. It is proved that for this type sets W with symmetric structure it is guaranteed almost everywhere convergence of Fourier-Haar series of any function from the class L(ln+L)n−1.
Lingua originaleEnglish
pagine (da-a)288-295
Numero di pagine8
RivistaJournal of Contemporary Mathematical Analysis
Volume54
Stato di pubblicazionePublished - 2019

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2603???
  • ???subjectarea.asjc.2600.2606???
  • ???subjectarea.asjc.2600.2604???

Fingerprint

Entra nei temi di ricerca di 'On the Almost Everywhere Convergence of Multiple Fourier-Haar Series'. Insieme formano una fingerprint unica.

Cita questo