On set-valued cone absolutely summing maps

Valeria Marraffa, Coenraad C.A. Labuschagne

Risultato della ricerca: Articlepeer review

5 Citazioni (Scopus)


Spaces of cone absolutely summing maps are generalizations of Bochner spaces L(p)(mu, Y), where (Omega, Sigma, mu) is some measure space, 1 <= p < infinity and Y is a Banach space. The Hiai-Umegaki space L(1)[Sigma, cbf(X)] of integrably bounded functions F : Omega -> cbf(X), where the latter denotes the set of all convex bounded closed subsets of a separable Banach space X, is a set-valued analogue of L(1)(mu, X). The aim of this work is to introduce set-valued cone absolutely summing maps as a generalization of L(1)[Sigma, cbf(X)], and to derive necessary and sufficient conditions for a set-valued map to be such a set-valued cone absolutely summing map. We also describe these set-valued cone absolutely summing maps as those that map order-Pettis integrable functions to integrably bounded set-valued functions
Lingua originaleEnglish
pagine (da-a)148-157
Numero di pagine10
Stato di pubblicazionePublished - 2010

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2600???


Entra nei temi di ricerca di 'On set-valued cone absolutely summing maps'. Insieme formano una fingerprint unica.

Cita questo