On critical properties of the Berry curvature in the Kitaev honeycomb model

Luca Leonforte, Bernardo Spagnolo, Davide Valenti, Angelo Carollo, Francesco Bascone, Angelo Carollo, Bernardo Spagnolo, Davide Valenti

Risultato della ricerca: Articlepeer review

2 Citazioni (Scopus)

Abstract

We analyse the Kitaev honeycomb model, by means of the Berry curvature with respect to Hamiltonian parameters. We concentrate on the ground-state vortex-free sector, which allows us to exploit an appropriate Fermionisation technique. The parameter space includes a time-reversal breaking term which provides an analytical headway to study the curvature in phases in which it would otherwise vanish. The curvature is then analysed in the limit in which the time-reversal-symmetry-breaking perturbation vanishes. This provides remarkable information about the topological phase transitions of the model. The Berry curvature in itself exhibits no singularities at criticality, nevertheless it distinguishes different phases by showing different behaviours. In particular, the analysis of the first derivative shows a critical behaviour around the transition point.
Lingua originaleEnglish
pagine (da-a)094002-1-094002-15
Numero di pagine15
RivistaJournal of Statistical Mechanics: Theory and Experiment
Volume2019
Stato di pubblicazionePublished - 2019

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Fingerprint Entra nei temi di ricerca di 'On critical properties of the Berry curvature in the Kitaev honeycomb model'. Insieme formano una fingerprint unica.

Cita questo