On closures of discrete sets

Santi Domenico Spadaro, Santi Spadaro

Risultato della ricerca: Articlepeer review

1 Citazioni (Scopus)

Abstract

The depth of a topological space X (g(X)) is defined as the supremum of the cardinalities of closures of discrete subsets of X. Solving a problem of Martínez-Ruiz, Ramírez-Páramo and Romero-Morales, we prove that the cardinal inequality |X|≤g(X)L(X)⋅F(X) holds for every Hausdorff space X, where L(X) is the Lindelöf number of X and F(X) is the supremum of the cardinalities of the free sequences in X.
Lingua originaleEnglish
Numero di pagine5
RivistaQuaestiones Mathematicae
Stato di pubblicazionePublished - 2019

All Science Journal Classification (ASJC) codes

  • Mathematics (miscellaneous)

Cita questo