Abstract
We study the base locus of the higher fundamental forms of a projective toric variety X at a general point. More precisely we consider the closure X of the image of a map (C*)k→Pn, sending t to the vector of Laurent monomials with exponents p0,…,pn∈Zk. We prove that the m-th fundamental form of such an X at a general point has non empty base locus if and only if the points pi lie on a suitable degree-m affine hypersurface. We then restrict to the case in which the points pi are all the lattice points of a lattice polytope and we give some applications of the above result. In particular we provide a classification for the second fundamental forms on toric surfaces, and we also give some new examples of weighted 3-dimensional projective spaces whose blowing up at a general point is not Mori dream.
Lingua originale | English |
---|---|
pagine (da-a) | 1-18 |
Numero di pagine | 18 |
Rivista | Journal of Pure and Applied Algebra |
Volume | 224 |
Stato di pubblicazione | Published - 2020 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2602???