On 2-(n^2,2n,2n-1) designs with three intersection numbers

Risultato della ricerca: Articlepeer review

Abstract

The simple incidence structure D(A,2), formed by the points and the unordered pairs of distinct parallel lines of a finite affine plane A = (P,L) of order n > 4, is a 2 - (n 2,2n,2n-1) design with intersection numbers 0,4,n. In this paper, we show that the converse is true, when n > 5 is an odd integer.
Lingua originaleEnglish
pagine (da-a)33-40
Numero di pagine8
RivistaDESIGNS, CODES AND CRYPTOGRAPHY
Volume43
Stato di pubblicazionePublished - 2007

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2614???
  • ???subjectarea.asjc.2600.2607???
  • ???subjectarea.asjc.1700.1706???
  • ???subjectarea.asjc.2600.2604???

Fingerprint

Entra nei temi di ricerca di 'On 2-(n^2,2n,2n-1) designs with three intersection numbers'. Insieme formano una fingerprint unica.

Cita questo