Novel solutions for closed-loop reverse electrodialysis: Thermodynamic characterisation and perspective analysis

Risultato della ricerca: Article

11 Citazioni (Scopus)

Abstract

Closed-loop Reverse Electrodialysis is a novel technology to directly convert low-grade heat into electricity. It consists of a reverse electrodialysis (RED) unit where electricity is produced exploiting the salinity gradient between two salt-water solutions, coupled with a regeneration unit where waste-heat is used to treat the solutions exiting from the RED unit and restore their initial composition. One of the most important advantages of closed-loop systems compared to the open systems is the possibility to select ad-hoc salt solutions to achieve high efficiencies. Therefore, the properties of the salt solutions are essential to assess the performance of the energy generation and solution regeneration processes. The aim of this study is to analyse the influence of thermodynamic properties of non-conventional salt solutions (i.e. other than NaCl-aqueous solutions) and their influence on the operation of the closed-loop RED. New data for caesium and potassium acetate salts, i.e. osmotic and activity coefficients in aqueous solutions, at temperature between 20 and 90 °C are reported as a function of molality. The data are correlated using Pitzer's model, which is then used to assess the theoretical performance of the whole closed-loop RED system considering both single and multi-stage regeneration units. Results indicate that KAc, CsAc and LiCl are the most promising salts among those screened.
Lingua originaleEnglish
pagine (da-a)674-689
Numero di pagine16
RivistaDefault journal
Volume166
Stato di pubblicazionePublished - 2019

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Building and Construction
  • Pollution
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Cita questo

@article{873cf7ef05e0438d986381f2c0696607,
title = "Novel solutions for closed-loop reverse electrodialysis: Thermodynamic characterisation and perspective analysis",
abstract = "Closed-loop Reverse Electrodialysis is a novel technology to directly convert low-grade heat into electricity. It consists of a reverse electrodialysis (RED) unit where electricity is produced exploiting the salinity gradient between two salt-water solutions, coupled with a regeneration unit where waste-heat is used to treat the solutions exiting from the RED unit and restore their initial composition. One of the most important advantages of closed-loop systems compared to the open systems is the possibility to select ad-hoc salt solutions to achieve high efficiencies. Therefore, the properties of the salt solutions are essential to assess the performance of the energy generation and solution regeneration processes. The aim of this study is to analyse the influence of thermodynamic properties of non-conventional salt solutions (i.e. other than NaCl-aqueous solutions) and their influence on the operation of the closed-loop RED. New data for caesium and potassium acetate salts, i.e. osmotic and activity coefficients in aqueous solutions, at temperature between 20 and 90 °C are reported as a function of molality. The data are correlated using Pitzer's model, which is then used to assess the theoretical performance of the whole closed-loop RED system considering both single and multi-stage regeneration units. Results indicate that KAc, CsAc and LiCl are the most promising salts among those screened.",
author = "Andrea Cipollina and Francesco Giacalone and Micale, {Giorgio Domenico Maria} and Santori and Giacalone and Olkis and Brandani",
year = "2019",
language = "English",
volume = "166",
pages = "674--689",
journal = "Default journal",

}

TY - JOUR

T1 - Novel solutions for closed-loop reverse electrodialysis: Thermodynamic characterisation and perspective analysis

AU - Cipollina, Andrea

AU - Giacalone, Francesco

AU - Micale, Giorgio Domenico Maria

AU - Santori, null

AU - Giacalone, null

AU - Olkis, null

AU - Brandani, null

PY - 2019

Y1 - 2019

N2 - Closed-loop Reverse Electrodialysis is a novel technology to directly convert low-grade heat into electricity. It consists of a reverse electrodialysis (RED) unit where electricity is produced exploiting the salinity gradient between two salt-water solutions, coupled with a regeneration unit where waste-heat is used to treat the solutions exiting from the RED unit and restore their initial composition. One of the most important advantages of closed-loop systems compared to the open systems is the possibility to select ad-hoc salt solutions to achieve high efficiencies. Therefore, the properties of the salt solutions are essential to assess the performance of the energy generation and solution regeneration processes. The aim of this study is to analyse the influence of thermodynamic properties of non-conventional salt solutions (i.e. other than NaCl-aqueous solutions) and their influence on the operation of the closed-loop RED. New data for caesium and potassium acetate salts, i.e. osmotic and activity coefficients in aqueous solutions, at temperature between 20 and 90 °C are reported as a function of molality. The data are correlated using Pitzer's model, which is then used to assess the theoretical performance of the whole closed-loop RED system considering both single and multi-stage regeneration units. Results indicate that KAc, CsAc and LiCl are the most promising salts among those screened.

AB - Closed-loop Reverse Electrodialysis is a novel technology to directly convert low-grade heat into electricity. It consists of a reverse electrodialysis (RED) unit where electricity is produced exploiting the salinity gradient between two salt-water solutions, coupled with a regeneration unit where waste-heat is used to treat the solutions exiting from the RED unit and restore their initial composition. One of the most important advantages of closed-loop systems compared to the open systems is the possibility to select ad-hoc salt solutions to achieve high efficiencies. Therefore, the properties of the salt solutions are essential to assess the performance of the energy generation and solution regeneration processes. The aim of this study is to analyse the influence of thermodynamic properties of non-conventional salt solutions (i.e. other than NaCl-aqueous solutions) and their influence on the operation of the closed-loop RED. New data for caesium and potassium acetate salts, i.e. osmotic and activity coefficients in aqueous solutions, at temperature between 20 and 90 °C are reported as a function of molality. The data are correlated using Pitzer's model, which is then used to assess the theoretical performance of the whole closed-loop RED system considering both single and multi-stage regeneration units. Results indicate that KAc, CsAc and LiCl are the most promising salts among those screened.

UR - http://hdl.handle.net/10447/336024

M3 - Article

VL - 166

SP - 674

EP - 689

JO - Default journal

JF - Default journal

ER -