Abstract
We first compare several algebraic notions of normality, from a categorical viewpoint. Then we introduce an intrinsic description of Higgins' commutator for ideal-determined categories, and we define a new notion of normality in terms of this commutator. Our main result is to extend to any semi-abelian category the following well-known characterization of normal subgroups: a subobject K is normal in A if. and only if, {[A, K] <= K. (C) 2010 Elsevier Inc. All rights reserved.}
Lingua originale | English |
---|---|
pagine (da-a) | 2568-2588 |
Numero di pagine | 21 |
Rivista | Journal of Algebra |
Volume | 324 |
Stato di pubblicazione | Published - 2010 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2602???