Normalities and commutators

Giuseppe Metere, Sandra Mantovani, Giuseppe Metere

Risultato della ricerca: Article

21 Citazioni (Scopus)

Abstract

We first compare several algebraic notions of normality, from a categorical viewpoint. Then we introduce an intrinsic description of Higgins' commutator for ideal-determined categories, and we define a new notion of normality in terms of this commutator. Our main result is to extend to any semi-abelian category the following well-known characterization of normal subgroups: a subobject K is normal in A if. and only if, {[A, K] <= K. (C) 2010 Elsevier Inc. All rights reserved.}
Lingua originaleEnglish
pagine (da-a)2568-2588
Numero di pagine21
RivistaJournal of Algebra
Volume324
Stato di pubblicazionePublished - 2010

Fingerprint

Commutator
Normality
Semi-abelian Category
Normal subgroup
Categorical

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

Cita questo

Metere, G., Mantovani, S., & Metere, G. (2010). Normalities and commutators. Journal of Algebra, 324, 2568-2588.

Normalities and commutators. / Metere, Giuseppe; Mantovani, Sandra; Metere, Giuseppe.

In: Journal of Algebra, Vol. 324, 2010, pag. 2568-2588.

Risultato della ricerca: Article

Metere, G, Mantovani, S & Metere, G 2010, 'Normalities and commutators', Journal of Algebra, vol. 324, pagg. 2568-2588.
Metere G, Mantovani S, Metere G. Normalities and commutators. Journal of Algebra. 2010;324:2568-2588.
Metere, Giuseppe ; Mantovani, Sandra ; Metere, Giuseppe. / Normalities and commutators. In: Journal of Algebra. 2010 ; Vol. 324. pagg. 2568-2588.
@article{9f711cc240e44685b1c1df5eda722d14,
title = "Normalities and commutators",
abstract = "We first compare several algebraic notions of normality, from a categorical viewpoint. Then we introduce an intrinsic description of Higgins' commutator for ideal-determined categories, and we define a new notion of normality in terms of this commutator. Our main result is to extend to any semi-abelian category the following well-known characterization of normal subgroups: a subobject K is normal in A if. and only if, {[A, K] <= K. (C) 2010 Elsevier Inc. All rights reserved.}",
keywords = "Normal subobject; Ideal; Commutator; Semi-abelian",
author = "Giuseppe Metere and Sandra Mantovani and Giuseppe Metere",
year = "2010",
language = "English",
volume = "324",
pages = "2568--2588",
journal = "Journal of Algebra",
issn = "0021-8693",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - Normalities and commutators

AU - Metere, Giuseppe

AU - Mantovani, Sandra

AU - Metere, Giuseppe

PY - 2010

Y1 - 2010

N2 - We first compare several algebraic notions of normality, from a categorical viewpoint. Then we introduce an intrinsic description of Higgins' commutator for ideal-determined categories, and we define a new notion of normality in terms of this commutator. Our main result is to extend to any semi-abelian category the following well-known characterization of normal subgroups: a subobject K is normal in A if. and only if, {[A, K] <= K. (C) 2010 Elsevier Inc. All rights reserved.}

AB - We first compare several algebraic notions of normality, from a categorical viewpoint. Then we introduce an intrinsic description of Higgins' commutator for ideal-determined categories, and we define a new notion of normality in terms of this commutator. Our main result is to extend to any semi-abelian category the following well-known characterization of normal subgroups: a subobject K is normal in A if. and only if, {[A, K] <= K. (C) 2010 Elsevier Inc. All rights reserved.}

KW - Normal subobject; Ideal; Commutator; Semi-abelian

UR - http://hdl.handle.net/10447/74837

M3 - Article

VL - 324

SP - 2568

EP - 2588

JO - Journal of Algebra

JF - Journal of Algebra

SN - 0021-8693

ER -