Nonlinear SDE Excited by External Lévy White Noise Processes

    Risultato della ricerca: Other

    Abstract

    A numerical method for approximating the statistics of the solution of nonlinear stochastic systems excited by Gaussian and non-Gaussian external white noises is proposed. The differential equation governing the evolution in time of the characteristic function is resolved by the convolution quadrature method. Thisapproach is especially suited for those problems in which the nonlinear drift term is not of polynomial form.In such cases the equation governing the evolution in time of the characteristic function is not a partial differential equation. Statistics are found by introducing an integral operator of Wiener-Hopf type, called the transformation operator, and applying the Lubich's convolution quadrature. This leads to find the statistics of the response by solving a linear system of differential equations.
    Lingua originaleEnglish
    Numero di pagine9
    Stato di pubblicazionePublished - 2010

      Fingerprint

    Cita questo