Noise-induced phenomena in transient dynamics of short and long Josephson junctions

Risultato della ricerca: Other contribution

Abstract

The investigation of nonlinear properties of Josephson junctions(JJs) is very important due to their broad applications in logicdevices. Currently, all Josephson junctions are manufactured withthe use of optical and electronic lithography, and they can alwaysbe considered as distributed. Moreover great interest recently hasattracted, from theoretical and experimentally point of view, theinvestigation of the influence of thermal fluctuations inmacroscopic quantum phenomena of short and long Josephson junctions.Particularly the role of the noise on the life time of thesuperconductive state has been subject of many investigations. Infact for some devices, as the rapid single flux quantum devices(RSFQ), based on Josephson junctions, minimization of the switchingtime is required for better performance. In the frame of the resistive McCumber-Stewart model we analyze the transient dynamics of short and long overdamped Josephson junctions, in the presence both of a periodic driving force and a Gaussian autocorrelated noise. We use the archetypal source for colored noise, i. e. an exponentially correlated Ornstein-Uhlenbeck process. We focus our study on the behavior of the mean switching time (MST), and its standard deviation, from superconductive to resistive regime as a function of the colored noise parameters, i.e. noise intensity $\sigma$ and correlation time $\tau_c$. The resonant activation (RA) and the noise enhanced stability (NES) phenomena have been investigated with different noise parameters and bias current. In a short Josephson junction we find that fluctuations may both decrease and increase the mean switching time and that the positions both of the minimum of RA and the maximum of NES depend on the value of the noise correlation time $\tau_c$. Moreover in the frequency range where RA is observed, the mean switching time exhibits a non-monotonic behavior as a function of $\tau_c$. In order to take into account the spatial effects, we consider the phase values depending also on the space and, therefore, the stochastic dynamics of a long Josephson junction is investigated, in the frame of the sine-Gordon model. The influence of the length of the JJ on the mean switching time and on the above-mentioned noise induced phenomena (RA and NES), in the presence of colored noise, is analyzed. The influence of different bias currents on the MST is also investigated. Our results are discussed and compared with those obtained in the presence of white noise.
Lingua originaleEnglish
Stato di pubblicazionePublished - 2008

Fingerprint Entra nei temi di ricerca di 'Noise-induced phenomena in transient dynamics of short and long Josephson junctions'. Insieme formano una fingerprint unica.

  • Cita questo