New insights into the pathogenesis of giant cell arteritis

Giuliana Guggino, Angelo Ferrante, Giovanni Triolo, Francesco Ciccia, Aroldo Rizzo, Stefania Croci, Alberto Cavazza, Carlo Salvarani

Risultato della ricerca: Articlepeer review

21 Citazioni (Scopus)


Giant cell arteritis (GCA) is an inflammatory chronic disease occurring exclusively in elderly individuals. Until recently, the disease has been considered a unique disease resulting from the interaction in the walls of susceptible arteries, between an unknown infectious agents with local dendritic cells (DCs), activated CD4 T cells and effector macrophages. Recent evidence has shown that this view was too simplistic and has clarified many of the pathogenetic aspects of the disease. Many genetic studies recently published have identified different new genes, including cytokines, adhesion molecules and regulators of innate immunity, as crucial players in the development and progression of GCA. Recent evidence suggests that there is heterogeneity of histological lesions in GCA, that are correlated with different immunological Th9 and Th17 signature. The recent demonstration that Varicella-zoster virus (VZV) antigen is present in the 64% of GCA-negative TAs and in the 73% of GCA-positive TAs could represent an important point of arrival in the search for a causative agent in the pathogenesis of a metameric disease such as GCA. In this context, cytokines such as IL-32 and IL-33 that act as a danger signal following tissue damage and infection are over-expressed in GCA arteries. Artery tertiary lymphoid organs, present in up to 50% of GCA-positive arteries, could represent the sites were primary immune responses and T- and B-cell autoimmune responses against viral antigens are organized. The recently demonstrated disturbed distribution of B cells in GCA could be also relevant in the pathogenesis of the disease, possibly contributing to the enhanced IL-6 response. Altogether, these evidences may clarify many pathogenetic aspect of the disease, also suggesting complexity greater than first imagined.
Lingua originaleEnglish
pagine (da-a)675-683
Numero di pagine9
RivistaAutoimmunity Reviews
Stato di pubblicazionePublished - 2017

All Science Journal Classification (ASJC) codes

  • Immunology and Allergy
  • Immunology

Fingerprint Entra nei temi di ricerca di 'New insights into the pathogenesis of giant cell arteritis'. Insieme formano una fingerprint unica.

Cita questo