Mutual nonlinear prediction of cardiovascular variability series: Comparison between exogenous and autoregressive exogenous models

Luca Faes, Giandomenico Nollo, Alberto Porta

Risultato della ricerca: Paper

Abstract

A model-based approach to perform mutual nonlinear prediction of short cardiovascular variability series is presented. The approach is based on identifying exogenous (X) and autoregressive exogenous (ARX) models by K-nearest neighbors local linear approximation, and estimates the predictability of a series given the other as the squared correlation between original and predicted values of the series. The method was first tested on simulations reproducing different types of interaction between non-identical Henon maps, and then applied to heart rate (HR) and blood pressure (BP) variability series measured in healthy subjects at rest and after head-up tilt. Simulations showed that different coupling conditions were always detected by the X model but not by the ARX model. The comparison between X and ARX models suggested the presence of oscillatory sources determining the regularity of HR and BP dynamics independently of their closed-loop mutual regulation. The transition from supine to upright position was associated with an enhancement of the HR and BP mutual regulation, compatible with the activation of the sympathetic nervous system induced by tilt. © 2007 IEEE.
Lingua originaleEnglish
Stato di pubblicazionePublished - 2007

Fingerprint

Blood pressure
Pressure regulation
Neurology
Chemical activation

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering

Cita questo

@conference{00d304cf18414f2289bd596e025c1688,
title = "Mutual nonlinear prediction of cardiovascular variability series: Comparison between exogenous and autoregressive exogenous models",
abstract = "A model-based approach to perform mutual nonlinear prediction of short cardiovascular variability series is presented. The approach is based on identifying exogenous (X) and autoregressive exogenous (ARX) models by K-nearest neighbors local linear approximation, and estimates the predictability of a series given the other as the squared correlation between original and predicted values of the series. The method was first tested on simulations reproducing different types of interaction between non-identical Henon maps, and then applied to heart rate (HR) and blood pressure (BP) variability series measured in healthy subjects at rest and after head-up tilt. Simulations showed that different coupling conditions were always detected by the X model but not by the ARX model. The comparison between X and ARX models suggested the presence of oscillatory sources determining the regularity of HR and BP dynamics independently of their closed-loop mutual regulation. The transition from supine to upright position was associated with an enhancement of the HR and BP mutual regulation, compatible with the activation of the sympathetic nervous system induced by tilt. {\^A}{\circledC} 2007 IEEE.",
author = "Luca Faes and Giandomenico Nollo and Alberto Porta",
year = "2007",
language = "English",

}

TY - CONF

T1 - Mutual nonlinear prediction of cardiovascular variability series: Comparison between exogenous and autoregressive exogenous models

AU - Faes, Luca

AU - Nollo, Giandomenico

AU - Porta, Alberto

PY - 2007

Y1 - 2007

N2 - A model-based approach to perform mutual nonlinear prediction of short cardiovascular variability series is presented. The approach is based on identifying exogenous (X) and autoregressive exogenous (ARX) models by K-nearest neighbors local linear approximation, and estimates the predictability of a series given the other as the squared correlation between original and predicted values of the series. The method was first tested on simulations reproducing different types of interaction between non-identical Henon maps, and then applied to heart rate (HR) and blood pressure (BP) variability series measured in healthy subjects at rest and after head-up tilt. Simulations showed that different coupling conditions were always detected by the X model but not by the ARX model. The comparison between X and ARX models suggested the presence of oscillatory sources determining the regularity of HR and BP dynamics independently of their closed-loop mutual regulation. The transition from supine to upright position was associated with an enhancement of the HR and BP mutual regulation, compatible with the activation of the sympathetic nervous system induced by tilt. © 2007 IEEE.

AB - A model-based approach to perform mutual nonlinear prediction of short cardiovascular variability series is presented. The approach is based on identifying exogenous (X) and autoregressive exogenous (ARX) models by K-nearest neighbors local linear approximation, and estimates the predictability of a series given the other as the squared correlation between original and predicted values of the series. The method was first tested on simulations reproducing different types of interaction between non-identical Henon maps, and then applied to heart rate (HR) and blood pressure (BP) variability series measured in healthy subjects at rest and after head-up tilt. Simulations showed that different coupling conditions were always detected by the X model but not by the ARX model. The comparison between X and ARX models suggested the presence of oscillatory sources determining the regularity of HR and BP dynamics independently of their closed-loop mutual regulation. The transition from supine to upright position was associated with an enhancement of the HR and BP mutual regulation, compatible with the activation of the sympathetic nervous system induced by tilt. © 2007 IEEE.

UR - http://hdl.handle.net/10447/278498

M3 - Paper

ER -