Multi-objective optimization of nitinol stent design

Massimiliano Zingales, Conti, Gianluca Alaimo, Massimiliano Zingales, Auricchio

Risultato della ricerca: Article

5 Citazioni (Scopus)

Abstract

Nitinol stents continuously experience loadings due to pulsatile pressure, thus a given stent design should possess an adequate fatigue strength and, at the same time, it should guarantee a sufficient vessel scaffolding. The present study proposes an optimization framework aiming at increasing the fatigue life reducing the maximum strut strain along the structure through a local modification of the strut profile.The adopted computational framework relies on nonlinear structural finite element analysis combined with a Multi Objective Genetic Algorithm, based on Kriging response surfaces. In particular, such an approach is used to investigate the design optimization of planar stent cell.The results of the strut profile optimization confirm the key role of a tapered strut design to enhance the stent fatigue strength, suggesting that it is possible to achieve a marked improvement of both the fatigue safety factor and the scaffolding capability simultaneously. The present study underlines the value of advanced engineering tools to optimize the design of medical devices.
Lingua originaleEnglish
pagine (da-a)13-24
Numero di pagine12
RivistaMEDICAL ENGINEERING & PHYSICS
Volume47
Stato di pubblicazionePublished - 2017

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biomedical Engineering

Cita questo

Zingales, M., Conti, Alaimo, G., Zingales, M., & Auricchio (2017). Multi-objective optimization of nitinol stent design. MEDICAL ENGINEERING & PHYSICS, 47, 13-24.