### Abstract

Lingua originale | English |
---|---|

Numero di pagine | 1 |

Stato di pubblicazione | Published - 2017 |

### Cita questo

**MR3667002 Reviewed
Vogt, Dietmar(D-BUW)
Hadamard operators on D′(Ω). (English summary)
Math. Nachr. 290 (2017), no. 8-9, 1374–1380.
46F10 (46F12 47B38).** / Tschinke, Francesco.

Risultato della ricerca: Other contribution

}

TY - GEN

T1 - MR3667002 Reviewed Vogt, Dietmar(D-BUW) Hadamard operators on D′(Ω). (English summary) Math. Nachr. 290 (2017), no. 8-9, 1374–1380. 46F10 (46F12 47B38)

AU - Tschinke, Francesco

PY - 2017

Y1 - 2017

N2 - In this paper, the Hadamard operators, i.e. a particular class of continuous linear operators on D′(Ω) whose set of eigenvectors is the class of monomials, are considered on an open set Ω⊂Rd. Specifically, Hadamard operators L are characterized by the multiplicative convolution, that is, there exists a distribution T such that L(S)=S⋆T, where the multiplicative convolution ⋆ is defined by (S⋆T)ϕ=Sy(Txϕ(xy)). To obtain this characterization, the author defines a particular extension to D(Ω˜), where Ω˜:=⋃a∈RdaΩ, of the transpose of Hadamard operators. This result is a generalization of a previous work of the author where only the case Ω=Rd was considered.

AB - In this paper, the Hadamard operators, i.e. a particular class of continuous linear operators on D′(Ω) whose set of eigenvectors is the class of monomials, are considered on an open set Ω⊂Rd. Specifically, Hadamard operators L are characterized by the multiplicative convolution, that is, there exists a distribution T such that L(S)=S⋆T, where the multiplicative convolution ⋆ is defined by (S⋆T)ϕ=Sy(Txϕ(xy)). To obtain this characterization, the author defines a particular extension to D(Ω˜), where Ω˜:=⋃a∈RdaΩ, of the transpose of Hadamard operators. This result is a generalization of a previous work of the author where only the case Ω=Rd was considered.

UR - http://hdl.handle.net/10447/325764

UR - https://mathscinet.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=RVCN&pg5=TI&pg6=RVCN&pg7=ALLF&pg8=ET&review_format=html&s4=tschinke&s5=&s6=&s7=&s8=All&sort=Newest&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=4&mx-pid=3667002

M3 - Other contribution

ER -