TY - GEN
T1 - MR3667002 Reviewed Vogt, Dietmar(D-BUW)Hadamard operators on D′(Ω). (English summary) Math. Nachr. 290 (2017), no. 8-9, 1374–1380. 46F10 (46F12 47B38)
AU - Tschinke, Francesco
PY - 2017
Y1 - 2017
N2 - In this paper, the Hadamard operators, i.e. a particular class of continuous linear operators on D′(Ω) whose set of eigenvectors is the class of monomials, are considered on an open set Ω⊂Rd. Specifically, Hadamard operators L are characterized by the multiplicative convolution, that is, there exists a distribution T such that L(S)=S⋆T, where the multiplicative convolution ⋆ is defined by (S⋆T)ϕ=Sy(Txϕ(xy)). To obtain this characterization, the author defines a particular extension to D(Ω˜), where Ω˜:=⋃a∈RdaΩ, of the transpose of Hadamard operators. This result is a generalization of a previous work of the author where only the case Ω=Rd was considered.
AB - In this paper, the Hadamard operators, i.e. a particular class of continuous linear operators on D′(Ω) whose set of eigenvectors is the class of monomials, are considered on an open set Ω⊂Rd. Specifically, Hadamard operators L are characterized by the multiplicative convolution, that is, there exists a distribution T such that L(S)=S⋆T, where the multiplicative convolution ⋆ is defined by (S⋆T)ϕ=Sy(Txϕ(xy)). To obtain this characterization, the author defines a particular extension to D(Ω˜), where Ω˜:=⋃a∈RdaΩ, of the transpose of Hadamard operators. This result is a generalization of a previous work of the author where only the case Ω=Rd was considered.
UR - http://hdl.handle.net/10447/325764
UR - https://mathscinet.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=RVCN&pg5=TI&pg6=RVCN&pg7=ALLF&pg8=ET&review_format=html&s4=tschinke&s5=&s6=&s7=&s8=All&sort=Newest&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=4&mx-pid=3667002
M3 - Other contribution
ER -