TY - JOUR
T1 - MR 3020148 Reviewed McMullen, C.T. Braid groups and Hodge theory. Mathematische Annalen, vol. 355 (2013), pp.893–-946. (Reviewer Francesca Vetro) 20F36 (14C30)
AU - Vetro, Francesca
PY - 2014
Y1 - 2014
N2 - In this paper, the author studies the unitary representations of the braid group and the geometric structures on moduli space that arise via the Hodge theory of cyclic branched coverings of P^1. In particular, the author is interested in the classification of certain arithmetic subgroups of U(r, s) which envelop the image of the braid group. The author investigates their connections with complex reflection groups, Teichm\"{u}lller curves, ergodic theory and problems in surface topology.
AB - In this paper, the author studies the unitary representations of the braid group and the geometric structures on moduli space that arise via the Hodge theory of cyclic branched coverings of P^1. In particular, the author is interested in the classification of certain arithmetic subgroups of U(r, s) which envelop the image of the braid group. The author investigates their connections with complex reflection groups, Teichm\"{u}lller curves, ergodic theory and problems in surface topology.
UR - http://hdl.handle.net/10447/103601
UR - http://www.ams.org
M3 - Review article
VL - 2014
JO - MATHEMATICAL REVIEWS
JF - MATHEMATICAL REVIEWS
SN - 0025-5629
ER -