MR 2944715 Reviewed Zhu S. On the recursion formula for double Hurwitz numbers. Proceedings of the American Mathematical Society (2012) 140, no. 11, 3749--3760. (Reviewer Francesca Vetro) 14H30 (05E05 14H10)

    Risultato della ricerca: Review articlepeer review

    Abstract

    Let $\mu = (\mu_{1}, \mu_{2}, \ldots, \mu_{m})$ and $\nu = (\nu_{1}, \nu_{2}, \ldots, \nu_{n})$ be two partitions of a positive integer $d$. In this paper, the author considers degree $d$ branched coverings of $\mathbb{P}^{1}$ with at most two special points, $0$ and $\infty$. Specifically, the purpose of the author is to give a recursion formula for double Hurwitz numbers $H^{g}_{\mu, \nu}$ by the cut-join analysis. Here, $H^{g}_{\mu, \nu}$ denotes the number of genus $g$ branched covers of $\mathbb{P}^{1}$ with branching date corresponding to $\mu$ and $\nu$ over $0$ and $\infty$, respectively. Furthemore, as application, the author gets a polynomial identity for linear Goulden-Jackson-Vakil intersection numbers.
    Lingua originaleEnglish
    Numero di pagine0
    RivistaMATHEMATICAL REVIEWS
    Volume2013
    Stato di pubblicazionePublished - 2013

    Fingerprint Entra nei temi di ricerca di 'MR 2944715 Reviewed Zhu S. On the recursion formula for double Hurwitz numbers. Proceedings of the American Mathematical Society (2012) 140, no. 11, 3749--3760. (Reviewer Francesca Vetro) 14H30 (05E05 14H10)'. Insieme formano una fingerprint unica.

    Cita questo