Morphology and thermal properties of foams prepared via thermally induced phase separation based on polylactic acid blends

Risultato della ricerca: Articlepeer review

12 Citazioni (Scopus)

Abstract

Blends of polylactic acid with two different types of polylactic acid with different average molecular weights (50,000 and 175,000 g/mol, respectively) in different proportions(90/10, 80/20 and 70/30) were utilized in order to produce biodegradable and biocompatible scaffolds for soft tissue engineering applications. The scaffolds were produced viathermally induced phase separation starting from ternary systems where dioxane was the solvent and water the non-solvent. Morphology (average pore size and interconnection)was evaluated by scanning electron microscopy. Foams apparent density was also evaluated (porosity ranges from 87% to 92%). Moreover, a differential scanning calorimetryanalysis was carried out on the as-obtained scaffold, so as to obtain information about their thermal properties (enthalpy of melting and crystallization). The results showed thatis possible to prepare scaffolds of polylactic acid/polylactic acid via thermally induced phase separation with both polylactic acids and to tune their average pore size (from 40to 70 mm) by changing some experimental parameters (e.g. demixing temperature).Moreover, the average molecular weight of the polylactic acid in the blend seems toinfluence the thermally induced phase separation process in terms of demixing temperatures, which resulted higher than pure polyLlactic acid for the blends containing the highmolecular weight polylactic acid, and lower for the blends containing the low molecular weight polylactic acid. Finally, a decrease in the crystallinity of the foams when increasingpolylactic acid content in polyLlactic acid/polylactic acid blends was observed, as witnessed by a drop in the enthalpy of melting and crystallization. The results confirm thatthe morphology and the mechanical properties of the scaffold can be tuned up, starting from polyLlactic acid and blending it in different proportions with polylactic acid withdifferent molecular weights.
Lingua originaleEnglish
pagine (da-a)399-407
Numero di pagine9
RivistaJournal of Cellular Plastics
Volume48
Stato di pubblicazionePublished - 2012

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.1600.1600???
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint Entra nei temi di ricerca di 'Morphology and thermal properties of foams prepared via thermally induced phase separation based on polylactic acid blends'. Insieme formano una fingerprint unica.

Cita questo