Monotonicity and total boundednessin spaces of measurable functions

Diana Caponetti, Alessandro Trombetta, Giulio Trombetta

Risultato della ricerca: Article

Abstract

We define and study the moduli $d(x, A, D)$ and $i(x,A,D)$ related to monotonicity of a given function $x$ of the space $L_0(\Omega)$ of real-valued ``measurable'' functions defined on a linearly ordered set $\Omega$. We extend the definitions to subsets $X$ of $L_0(\Omega)$, and we use the obtained quantities, $d(X)$ and $i(X)$, to estimate the Hausdorff measure of noncompactness $\gamma(X)$ of $X$. Compactness criteria, in special cases, are obtained.
Lingua originaleEnglish
pagine (da-a)1497-1508
Numero di pagine12
RivistaMathematica Slovaca
Volume67
Stato di pubblicazionePublished - 2017

Fingerprint

Hausdorff Measure of Noncompactness
L-space
Ordered Set
Measurable function
Compactness
Monotonicity
Modulus
Linearly
Subset
Estimate

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cita questo

Monotonicity and total boundednessin spaces of measurable functions. / Caponetti, Diana; Trombetta, Alessandro; Trombetta, Giulio.

In: Mathematica Slovaca, Vol. 67, 2017, pag. 1497-1508.

Risultato della ricerca: Article

Caponetti, D, Trombetta, A & Trombetta, G 2017, 'Monotonicity and total boundednessin spaces of measurable functions', Mathematica Slovaca, vol. 67, pagg. 1497-1508.
Caponetti, Diana ; Trombetta, Alessandro ; Trombetta, Giulio. / Monotonicity and total boundednessin spaces of measurable functions. In: Mathematica Slovaca. 2017 ; Vol. 67. pagg. 1497-1508.
@article{64feaa49832a4422990c52c724d982a4,
title = "Monotonicity and total boundednessin spaces of measurable functions",
abstract = "We define and study the moduli $d(x, A, D)$ and $i(x,A,D)$ related to monotonicity of a given function $x$ of the space $L_0(\Omega)$ of real-valued ``measurable'' functions defined on a linearly ordered set $\Omega$. We extend the definitions to subsets $X$ of $L_0(\Omega)$, and we use the obtained quantities, $d(X)$ and $i(X)$, to estimate the Hausdorff measure of noncompactness $\gamma(X)$ of $X$. Compactness criteria, in special cases, are obtained.",
author = "Diana Caponetti and Alessandro Trombetta and Giulio Trombetta",
year = "2017",
language = "English",
volume = "67",
pages = "1497--1508",
journal = "Mathematica Slovaca",
issn = "0139-9918",
publisher = "Versita",

}

TY - JOUR

T1 - Monotonicity and total boundednessin spaces of measurable functions

AU - Caponetti, Diana

AU - Trombetta, Alessandro

AU - Trombetta, Giulio

PY - 2017

Y1 - 2017

N2 - We define and study the moduli $d(x, A, D)$ and $i(x,A,D)$ related to monotonicity of a given function $x$ of the space $L_0(\Omega)$ of real-valued ``measurable'' functions defined on a linearly ordered set $\Omega$. We extend the definitions to subsets $X$ of $L_0(\Omega)$, and we use the obtained quantities, $d(X)$ and $i(X)$, to estimate the Hausdorff measure of noncompactness $\gamma(X)$ of $X$. Compactness criteria, in special cases, are obtained.

AB - We define and study the moduli $d(x, A, D)$ and $i(x,A,D)$ related to monotonicity of a given function $x$ of the space $L_0(\Omega)$ of real-valued ``measurable'' functions defined on a linearly ordered set $\Omega$. We extend the definitions to subsets $X$ of $L_0(\Omega)$, and we use the obtained quantities, $d(X)$ and $i(X)$, to estimate the Hausdorff measure of noncompactness $\gamma(X)$ of $X$. Compactness criteria, in special cases, are obtained.

UR - http://hdl.handle.net/10447/254096

UR - https://www.degruyter.com/view/j/ms.2017.67.issue-6/ms-2017-0065/ms-2017-0065.xml

M3 - Article

VL - 67

SP - 1497

EP - 1508

JO - Mathematica Slovaca

JF - Mathematica Slovaca

SN - 0139-9918

ER -