Modelling nonlinear dynamics of Crassulacean acid metabolism productivity and water use for global predictions

Paolo Inglese, Simona Consoli, Jun Yin, Samantha Hartzell, Mark S. Bartlett, Amilcare Porporato

Risultato della ricerca: Articlepeer review

4 Citazioni (Scopus)


Crassulacean acid metabolism (CAM) crops are important agricultural commodities in water-limited environments across the globe, yet modelling of CAM productivity lacks the sophistication of widely used C3 and C4 crop models, in part due to the complex responses of the CAM cycle to environmental conditions. This work builds on recent advances in CAM modelling to provide a framework for estimating CAM biomass yield and water use efficiency from basic principles. These advances, which integrate the CAM circadian rhythm with established models of carbon fixation, stomatal conductance and the soil–plant-atmosphere continuum, are coupled to models of light attenuation, plant respiration and biomass partitioning. Resulting biomass yield and transpiration for Opuntia ficus-indica and Agave tequilana are validated against field data and compared with predictions of CAM productivity obtained using the empirically based environmental productivity index. By representing regulation of the circadian state as a nonlinear oscillator, the modelling approach captures the diurnal dynamics of CAM stomatal conductance, allowing the prediction of CAM transpiration and water use efficiency for the first time at the plot scale. This approach may improve estimates of CAM productivity under light-limiting conditions when compared with previous methods.
Lingua originaleEnglish
pagine (da-a)34-48
Numero di pagine15
RivistaPlant, Cell and Environment
Stato di pubblicazionePublished - 2021

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.1300.1314???
  • ???subjectarea.asjc.1100.1110???


Entra nei temi di ricerca di 'Modelling nonlinear dynamics of Crassulacean acid metabolism productivity and water use for global predictions'. Insieme formano una fingerprint unica.

Cita questo