Modeling the electromechanical impedance technique for the assessment of dental implant stability

Emma La Malfa Ribolla, Piervincenzo Rizzo, Piervincenzo Rizzo

Risultato della ricerca: Articlepeer review

21 Citazioni (Scopus)


We simulated the electromechanical impedance (EMI) technique to assess the stability of dental implants. The technique consists of bonding a piezoelectric transducer to the element to be monitored. When subjected to an electric field, the transducer induces structural excitations which, in turn, affect the transducer's electrical admittance. As the structural vibrations depend on the mechanical impedance of the element, the measurement of the transducer's admittance can be exploited to assess the element's health. In the study presented in this paper, we created a 3D finite element model to mimic a transducer bonded to the abutment of a dental implant placed in a host bone site. We simulated the healing that occurs after surgery by changing Young's modulus of the bone-implant interface. The results show that as Young's modulus of the interface increases, i.e. as the mechanical interlock of the implant within the bone is achieved, the electromechanical characteristic of the transducer changes. The model and the findings of this numerical study may be used in the future to predict and interpret experimental data, and to develop a robust and cost-effective method for the assessment of primary and secondary dental implant stability.
Lingua originaleEnglish
pagine (da-a)1713-1720
Numero di pagine8
RivistaJournal of Biomechanics
Stato di pubblicazionePublished - 2015

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.1300.1304???
  • ???subjectarea.asjc.2200.2204???
  • ???subjectarea.asjc.2700.2732???
  • ???subjectarea.asjc.2700.2742???


Entra nei temi di ricerca di 'Modeling the electromechanical impedance technique for the assessment of dental implant stability'. Insieme formano una fingerprint unica.

Cita questo