Abstract
We address the problem of estimating generalized linear models when some covariate values are missingbut imputations are available to fill-in the missing values. This situation generates a bias-precision tradeoffin the estimation of the model parameters. Extending the generalized missing-indicator methodproposed by Dardanoni et al. (2011) for linear regression, we handle this trade-off as a problem ofmodel uncertainty using Bayesian averaging of classical maximum likelihood estimators (BAML). We alsopropose a block model averaging strategy that incorporates information on the missing-data patterns andis computationally simple. An empirical application illustrates our approach.
Lingua originale | English |
---|---|
pagine (da-a) | 452-463 |
Numero di pagine | 12 |
Rivista | Journal of Econometrics |
Volume | 184 |
Stato di pubblicazione | Published - 2015 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2000.2002???