Mirror quintics, discrete symmetries and Shioda maps

Gilberto Bini, Tyler L. Kelly, Bert Van Geemen, Gilberto Bini

Risultato della ricerca: Articlepeer review

8 Citazioni (Scopus)

Abstract

In a recent paper, Doran, Greene and Judes considered one parameter families of quintic threefolds with finite symmetry groups. A surprising result was that each of these six families has the same Picard-Fuchs equation associated to the holomorphic -form. In this paper we give an easy argument, involving the family of Mirror Quintics, which implies this result. Using a construction due to Shioda, we also relate certain quotients of these one-parameter families to the family of Mirror Quintics. Our constructions generalize to degree n Calabi-Yau varieties in (n - 1)-dimensional projective space.
Lingua originaleEnglish
pagine (da-a)401-412
Numero di pagine12
RivistaJournal of Algebraic Geometry
Volume21
Stato di pubblicazionePublished - 2012

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory
  • Geometry and Topology

Fingerprint Entra nei temi di ricerca di 'Mirror quintics, discrete symmetries and Shioda maps'. Insieme formano una fingerprint unica.

Cita questo