Mining customer requirements from online reviews: A product improvement perspective

Zhenping Zhang, Yanquan Zhou, Jiayin Qi, Seongmin Jeon, Zhenping Zhang

Risultato della ricerca: Articlepeer review

107 Citazioni (Scopus)

Abstract

Big data commerce has become an e-commerce trend. Learning how to extract valuable and real time insights from big data to drive smarter and more profitable business decisions is a main task of big data commerce. Using online reviews as an example, manufacturers have come to value how to select helpful online reviews and what can be learned from online reviews for new product development. In this research, we first proposed an automatic filtering model to predict the helpfulness of online reviews from the perspective of the product designer. The KANO method, which is based on the classical conjoint analysis model, is then innovatively applied to analyze online reviews to develop appropriate product improvement strategies. Moreover, an empirical case study using the new method is conducted with the data we acquired from JD.com, one of the largest electronic marketplaces in China. The case study indicates the effectiveness and robustness of the proposed approach. Our research suggests that the combination of big data and classical management models can bring success for big data commerce.
Lingua originaleEnglish
pagine (da-a)951-963
Numero di pagine13
RivistaINFORMATION & MANAGEMENT
Volume53
Stato di pubblicazionePublished - 2016

All Science Journal Classification (ASJC) codes

  • Management Information Systems
  • Information Systems
  • Information Systems and Management

Fingerprint Entra nei temi di ricerca di 'Mining customer requirements from online reviews: A product improvement perspective'. Insieme formano una fingerprint unica.

Cita questo