TY - JOUR
T1 - Metal drugs and the anticancer immune response
AU - Terenzi, Alessio
AU - Kowol, Christian R.
AU - Heffeter, Petra
AU - Terenzi, Alessio
AU - Keppler, Bernhard K.
AU - Berger, Walter
AU - Englinger, Bernhard
AU - Pirker, Christine
PY - 2019
Y1 - 2019
N2 - The immune system deploys a multitude of innate and adaptive mechanisms not only to ward off pathogens but also to prevent malignant transformation ("immune surveillance"). Hence, a clinically apparent tumor already reflects selection for those malignant cell clones capable of evading immune recognition ("immune evasion"). Metal drugs, besides their well-investigated cytotoxic anticancer effects, massively interact with the cancer-immune interface and can reverse important aspects of immune evasion. This topic has recently gained intense attention based on combination approaches with anticancer immunotherapy (e.g., immune checkpoint inhibitors), a strategy recently delivering first exciting results in clinical settings. This review summarizes the promising but still extremely fragmentary knowledge on the interplay of metal drugs with the fidelity of anticancer immune responses but also their role in adverse effects. It highlights that, at least in some cases, metal drugs can induce long-lasting anticancer immune responses. Important steps in this process comprise altered visibility and susceptibility of cancer cells toward innate and adaptive immunity, as well as direct impacts on immune cell populations and the tumor microenvironment. On the basis of the gathered information, we suggest initiating joint multidisciplinary programs to implement comprehensive immune analyses into strategies to develop novel and smart anticancer metal compounds.
AB - The immune system deploys a multitude of innate and adaptive mechanisms not only to ward off pathogens but also to prevent malignant transformation ("immune surveillance"). Hence, a clinically apparent tumor already reflects selection for those malignant cell clones capable of evading immune recognition ("immune evasion"). Metal drugs, besides their well-investigated cytotoxic anticancer effects, massively interact with the cancer-immune interface and can reverse important aspects of immune evasion. This topic has recently gained intense attention based on combination approaches with anticancer immunotherapy (e.g., immune checkpoint inhibitors), a strategy recently delivering first exciting results in clinical settings. This review summarizes the promising but still extremely fragmentary knowledge on the interplay of metal drugs with the fidelity of anticancer immune responses but also their role in adverse effects. It highlights that, at least in some cases, metal drugs can induce long-lasting anticancer immune responses. Important steps in this process comprise altered visibility and susceptibility of cancer cells toward innate and adaptive immunity, as well as direct impacts on immune cell populations and the tumor microenvironment. On the basis of the gathered information, we suggest initiating joint multidisciplinary programs to implement comprehensive immune analyses into strategies to develop novel and smart anticancer metal compounds.
UR - http://hdl.handle.net/10447/392797
UR - http://pubs.acs.org/journal/chreay
M3 - Article
VL - 119
SP - 1519
EP - 1624
JO - Chemical Reviews
JF - Chemical Reviews
SN - 0009-2665
ER -