Mean Escape Time in a System with Stochastic Volatility

Risultato della ricerca: Articlepeer review

78 Citazioni (Scopus)

Abstract

We study the mean escape time in a market model with stochastic volatility. The process followed by the volatility is the Cox, Ingersoll, and Ross process which is widely used to model stock price fluctuations. The market model can be considered as a generalization of the Heston model, where the geometric Brownian motion is replaced by a random walk in the presence of a cubic nonlinearity. We investigate the statistical properties of the escape time of the returns, from a given interval, as a function of the three parameters of the model. We find that the noise can have a stabilizing effect on the system, as long as the global noise is not too high with respect to the effective potential barrier experienced by a fictitious Brownian particle. We compare the probability density function of the return escape times of the model with those obtained from real market data. We find that they fit very well.
Lingua originaleEnglish
pagine (da-a)1-8
Numero di pagine8
RivistaPHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
Volume75
Stato di pubblicazionePublished - 2007

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Entra nei temi di ricerca di 'Mean Escape Time in a System with Stochastic Volatility'. Insieme formano una fingerprint unica.

Cita questo