Long gaps in multivariate spatio-temporal data: an approach based on functional data analysis

Risultato della ricerca: Paper

Abstract

The main aim of this paper is to perform Functional Principal Component Analysis (FPCA) taking into account spatio-temporal correlation structures, in order to fill in missing values in spatio-temporal multivariate data set. A spatial and a spatio-temporal variant of the classical temporal FPCA is considered; in other words, FPCA is carried out after modeling data with respect to more than one dimension: space (long, lat) or space+time. Moreover, multidimensional FPCA is extended to multivariate context (more than one variable). Information on spatial or spatiotemporal structures are efficiently extracted by applying Generalized Additive Models (GAMs). Both simulation studies and some performance indicators are used to validate the proposed procedure, showing that, especially in presence of long gaps, spatio-temporal FPCA provides a better reconstruction than spatial FPCA.
Lingua originaleEnglish
Stato di pubblicazionePublished - 2015

Fingerprint

modeling
simulation
data analysis
indicator

Cita questo

@conference{4dd5e5ea2e7849809a73a65d931ff626,
title = "Long gaps in multivariate spatio-temporal data: an approach based on functional data analysis",
abstract = "The main aim of this paper is to perform Functional Principal Component Analysis (FPCA) taking into account spatio-temporal correlation structures, in order to fill in missing values in spatio-temporal multivariate data set. A spatial and a spatio-temporal variant of the classical temporal FPCA is considered; in other words, FPCA is carried out after modeling data with respect to more than one dimension: space (long, lat) or space+time. Moreover, multidimensional FPCA is extended to multivariate context (more than one variable). Information on spatial or spatiotemporal structures are efficiently extracted by applying Generalized Additive Models (GAMs). Both simulation studies and some performance indicators are used to validate the proposed procedure, showing that, especially in presence of long gaps, spatio-temporal FPCA provides a better reconstruction than spatial FPCA.",
author = "{Di Salvo}, Francesca and Antonella Plaia and Mariantonietta Ruggieri",
year = "2015",
language = "English",

}

TY - CONF

T1 - Long gaps in multivariate spatio-temporal data: an approach based on functional data analysis

AU - Di Salvo, Francesca

AU - Plaia, Antonella

AU - Ruggieri, Mariantonietta

PY - 2015

Y1 - 2015

N2 - The main aim of this paper is to perform Functional Principal Component Analysis (FPCA) taking into account spatio-temporal correlation structures, in order to fill in missing values in spatio-temporal multivariate data set. A spatial and a spatio-temporal variant of the classical temporal FPCA is considered; in other words, FPCA is carried out after modeling data with respect to more than one dimension: space (long, lat) or space+time. Moreover, multidimensional FPCA is extended to multivariate context (more than one variable). Information on spatial or spatiotemporal structures are efficiently extracted by applying Generalized Additive Models (GAMs). Both simulation studies and some performance indicators are used to validate the proposed procedure, showing that, especially in presence of long gaps, spatio-temporal FPCA provides a better reconstruction than spatial FPCA.

AB - The main aim of this paper is to perform Functional Principal Component Analysis (FPCA) taking into account spatio-temporal correlation structures, in order to fill in missing values in spatio-temporal multivariate data set. A spatial and a spatio-temporal variant of the classical temporal FPCA is considered; in other words, FPCA is carried out after modeling data with respect to more than one dimension: space (long, lat) or space+time. Moreover, multidimensional FPCA is extended to multivariate context (more than one variable). Information on spatial or spatiotemporal structures are efficiently extracted by applying Generalized Additive Models (GAMs). Both simulation studies and some performance indicators are used to validate the proposed procedure, showing that, especially in presence of long gaps, spatio-temporal FPCA provides a better reconstruction than spatial FPCA.

UR - http://hdl.handle.net/10447/150032

M3 - Paper

ER -