Linking gamma-ray spectra of supernova remnants to the cosmic ray injection properties in the aftermath of supernovae

Marco Miceli, Petruk, Bocchino, Orlando, Miceli

Risultato della ricerca: Articlepeer review

4 Citazioni (Scopus)

Abstract

The acceleration times of the highest-energy particles, which emit gamma-rays in young and middle-age supernova remnants (SNRs), are comparable with SNR age. If the number of particles starting acceleration was varying during early times after the supernova explosion then this variation should be reflected in the shape of the gamma-ray spectrum. We use the solution of the non-stationary equation for particle acceleration in order to analyse this effect. As a test case, we apply our method to describe gamma-rays from IC 443. As a proxy of the IC 443 parent supernova we consider SN1987A. First, we infer the time dependence of injection efficiency from evolution of the radio spectral index in SN1987A. Then, we use the inferred injection behaviour to fit the gamma-ray spectrum of IC 443. We show that the break in the proton spectrum needed to explain the gamma-ray emission is a natural consequence of the early variation of the cosmic ray injection, and that the very-high-energy gamma rays originate from particles which began acceleration during the first months after the supernova explosion. We conclude that the shape of the gamma-ray spectrum observed today in SNRs critically depends on the time variation of the cosmic ray injection process in the immediate post-explosion phases. With the same model, we also estimate the future possibility of detecting gamma-rays from SN 1987A.
Lingua originaleEnglish
pagine (da-a)A110-
Numero di pagine9
RivistaASTRONOMY & ASTROPHYSICS
Volume605
Stato di pubblicazionePublished - 2017

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Entra nei temi di ricerca di 'Linking gamma-ray spectra of supernova remnants to the cosmic ray injection properties in the aftermath of supernovae'. Insieme formano una fingerprint unica.

Cita questo