Lineability of non-differentiable Pettis primitives

Risultato della ricerca: Articlepeer review

4 Citazioni (Scopus)


Let X be an infinite-dimensional Banach space. In 1995, settling a long outstanding problem of Pettis, Dilworth and Girardi constructed an X-valued Pettis integrable function on [0,1] whose primitive is nowhere weakly differentiable. Using their technique and some new ideas we show that ND, the set of strongly measurable Pettis integrable functions with nowhere weakly differentiable primitives, is lineable, i.e., there is an infinite dimensional vector space whose nonzero vectors belong to ND.
Lingua originaleEnglish
pagine (da-a)345-364
Numero di pagine20
Stato di pubblicazionePublished - 2015

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2600???


Entra nei temi di ricerca di 'Lineability of non-differentiable Pettis primitives'. Insieme formano una fingerprint unica.

Cita questo