TY - CHAP
T1 - Limits and Criticalities of Predictions and Forecasting in Complex Social and Economic Scenarios: A Cybernetics Key
AU - Dominici, Gandolfo
AU - Palumbo, Federica
PY - 2015
Y1 - 2015
N2 - Predictions play a key role in assuring the status of “rationality” indecisions. Nevertheless, in the field of social sciences and economics, predictionsfail to correctly depict the oncoming scenarios. Why is it so difficult to achievequantitative prediction of social and economic systems? Can science provide reliablepredictions of social and economic paths that can be used to implementeffective interventions? As in the notorious “El Farol bar problem” depicted byBrian Arthur (Am Econ Rev 84:406–411, 1994), the validity of predictive models ismore a social issue than a matter of good mathematics. Predictability in socialsystems is due to limited knowledge of society and human behavior. We do not yethave worldwide, quantitative knowledge of human social behavior; for instance, theperception of certain issues or the predisposition to adopt certain behaviors. Thoughtremendous progress has been made in recent years in data gathering thanks to thedevelopment of new technologies and the consequent increase in computationalpower, social and economic models still rely on assumptions of rationality thatundermine their predictive effectiveness. Through some theoretical and epistemologicalreflections, we propose a way in which the cybernetic paradigm of complexitymanagement can be used for better decision-making in complex scenarioswith a comprising, dynamic, and evolving approach. We will show how a cyberneticapproach can help to overcome the fear of uncertainty and serve as aneffective tool for improving decisions and actions.
AB - Predictions play a key role in assuring the status of “rationality” indecisions. Nevertheless, in the field of social sciences and economics, predictionsfail to correctly depict the oncoming scenarios. Why is it so difficult to achievequantitative prediction of social and economic systems? Can science provide reliablepredictions of social and economic paths that can be used to implementeffective interventions? As in the notorious “El Farol bar problem” depicted byBrian Arthur (Am Econ Rev 84:406–411, 1994), the validity of predictive models ismore a social issue than a matter of good mathematics. Predictability in socialsystems is due to limited knowledge of society and human behavior. We do not yethave worldwide, quantitative knowledge of human social behavior; for instance, theperception of certain issues or the predisposition to adopt certain behaviors. Thoughtremendous progress has been made in recent years in data gathering thanks to thedevelopment of new technologies and the consequent increase in computationalpower, social and economic models still rely on assumptions of rationality thatundermine their predictive effectiveness. Through some theoretical and epistemologicalreflections, we propose a way in which the cybernetic paradigm of complexitymanagement can be used for better decision-making in complex scenarioswith a comprising, dynamic, and evolving approach. We will show how a cyberneticapproach can help to overcome the fear of uncertainty and serve as aneffective tool for improving decisions and actions.
UR - http://hdl.handle.net/10447/103315
UR - http://link.springer.com/chapter/10.1007/978-3-319-09710-7_7
M3 - Chapter
SN - 9783319097091
T3 - SPRINGER PROCEEDINGS IN COMPLEXITY
SP - 85
EP - 91
BT - Chaos, Complexity and Leadership 2013
ER -