### Abstract

Let be a bounded smooth domain in . We prove a general existence result of least energy solutions and least energy nodal ones for the problem where f is a Carathéodory function. Our result includes some previous results related to special cases of f. Finally, we propose some open questions concerning the global minima of the restriction on the Nehari manifold of the energy functional associated with (P) when the nonlinearity is of the type , with and .

Lingua originale | English |
---|---|

pagine (da-a) | 303-314 |

Numero di pagine | 12 |

Rivista | Complex Variables and Elliptic Equations |

Volume | 63 |

Stato di pubblicazione | Published - 2018 |

### All Science Journal Classification (ASJC) codes

- Analysis
- Numerical Analysis
- Computational Mathematics
- Applied Mathematics

## Fingerprint Entra nei temi di ricerca di 'Least energy solutions to the Dirichlet problem for the equation −D(u) = f (x, u)'. Insieme formano una fingerprint unica.

## Cita questo

Tulone, F., & Iiritano, V. (2018). Least energy solutions to the Dirichlet problem for the equation −D(u) = f (x, u).

*Complex Variables and Elliptic Equations*,*63*, 303-314.