Lagrangian dynamics and possible isochronous behavior in several classes of non-linear second order oscillators via the use of Jacobi last multiplier

Gaetana Gambino, Tanriver, Roy Choudhury

Risultato della ricerca: Articlepeer review

3 Citazioni (Scopus)

Abstract

In this paper, we employ the technique of Jacobi Last Multiplier (JLM) to derive Lagrangians for several important and topical classes of non-linear second-order oscillators, including systems with variable and parametric dissipation, a generalized anharmonic oscillator, and a generalized Lane–Emden equation. For several of these systems, it is very difficult to obtain the Lagrangians directly, i.e., by solving the inverse problem of matching the Euler–Lagrange equations to the actual oscillator equation. In order to facilitate the derivation of exact solutions, and also investigate possible isochronous behavior in the analyzed systems, we next invoke some recent theoretical results and attempt to map the potential term to either the simple harmonic oscillator or the isotonic potential for specific values of the coefficient parameters of each non-linear oscillator. We find non-trivial parameter sets corresponding to isochronous dynamics in some of the considered systems, but none in others. Finally, the Lagrangians obtained here are coupled to Noether׳s theorem, leading to non-trivial conservation laws for several of the oscillators.
Lingua originaleEnglish
pagine (da-a)100-107
Numero di pagine8
RivistaInternational Journal of Non-Linear Mechanics
Volume74
Stato di pubblicazionePublished - 2015

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Applied Mathematics

Fingerprint Entra nei temi di ricerca di 'Lagrangian dynamics and possible isochronous behavior in several classes of non-linear second order oscillators via the use of Jacobi last multiplier'. Insieme formano una fingerprint unica.

Cita questo