Kernel intensity for space-time point processes with application to seismological problems

Risultato della ricerca: Chapter

3 Citazioni (Scopus)

Abstract

Dealing with data coming from a space-time inhomogeneous process,there is often the need of semi-parametric estimates of the conditional intensityfunction; isotropic or anisotropic multivariate kernel estimates can be used, with windows sizes h. The properties of the intensities estimated with this choice of hare not always good for specific fields of application; we could try to choose h inorder to have good predictive properties of the estimated intensity function. Since adirect ML approach cannot be followed, we propose an estimation procedure, computationally intensive, based on the subsequent increments of likelihood obtainedadding an observation at time. The first results obtained are very encouraging. Someapplication in statistical seismology is presented.
Lingua originaleEnglish
Titolo della pubblicazione ospiteClassification and multivariate analysis for complex data structures.
Pagine401-408
Numero di pagine8
Stato di pubblicazionePublished - 2011

Serie di pubblicazioni

NomeSTUDIES IN CLASSIFICATION, DATA ANALYSIS, AND KNOWLEDGE ORGANIZATION

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Information Systems
  • Information Systems and Management
  • Analysis

Fingerprint Entra nei temi di ricerca di 'Kernel intensity for space-time point processes with application to seismological problems'. Insieme formano una fingerprint unica.

Cita questo