TY - JOUR
T1 - Isolation and characterization of a murine resident liver stem cell
AU - Conigliaro, Alice
AU - Guerra, null
AU - Leopizzi, null
AU - Conigliaro, Alice
AU - Bordoni, Veronica
AU - Colletti, Marta
AU - Amicone, Laura
AU - Cicchini, Carla
AU - Tripodi, Marco
AU - Manfredini, null
AU - Siepi, null
AU - Zini, null
PY - 2008
Y1 - 2008
N2 - Increasing evidence provides support that mammalian liver contains stem/progenitor cells, but their molecular phenotype, embryological derivation, biology and their role in liver cell turnover and regeneration remain to be further clarified. In this study, we report the isolation, characterization and reproducible establishment in line of a resident liver stem cell (RLSC) with immunophenotype and differentiative potentiality distinct from other previously described liver precursor/stem cells. RLSCs, derived from fetal and neonatal murine livers as well as from immortalized hepatocytic MMH lines and established in lines, are Sca+, CD34-, CD45-, α-fetoprotein+ and albumin-. This molecular phenotype suggests a non-hematopoietic origin. RLSC transcriptional profile, defined by microArray technology, highlighted the expression of a broad spectrum of 'plasticity-related genes' and 'developmental genes' suggesting a multi-differentiative potentiality. Indeed, RLSCs spontaneously differentiate into hepatocytes and cholangiocytes and, when cultured in appropriate conditions, into mesenchymal and neuro-ectodermal cell lineages such as osteoblasts/ osteocytes, chondrocytes, astrocytes and neural cells. RLSC capability to spontaneously differentiate into hepatocytes, the lack of albumin expression and the broad differentiative potentiality locate them in a pre-hepatoblast/liver precursor cells hierarchical position. In conclusion, RLSCs may provide a useful tool to improve liver stem cell knowledge and to assess new therapeutic approaches for liver diseases.
AB - Increasing evidence provides support that mammalian liver contains stem/progenitor cells, but their molecular phenotype, embryological derivation, biology and their role in liver cell turnover and regeneration remain to be further clarified. In this study, we report the isolation, characterization and reproducible establishment in line of a resident liver stem cell (RLSC) with immunophenotype and differentiative potentiality distinct from other previously described liver precursor/stem cells. RLSCs, derived from fetal and neonatal murine livers as well as from immortalized hepatocytic MMH lines and established in lines, are Sca+, CD34-, CD45-, α-fetoprotein+ and albumin-. This molecular phenotype suggests a non-hematopoietic origin. RLSC transcriptional profile, defined by microArray technology, highlighted the expression of a broad spectrum of 'plasticity-related genes' and 'developmental genes' suggesting a multi-differentiative potentiality. Indeed, RLSCs spontaneously differentiate into hepatocytes and cholangiocytes and, when cultured in appropriate conditions, into mesenchymal and neuro-ectodermal cell lineages such as osteoblasts/ osteocytes, chondrocytes, astrocytes and neural cells. RLSC capability to spontaneously differentiate into hepatocytes, the lack of albumin expression and the broad differentiative potentiality locate them in a pre-hepatoblast/liver precursor cells hierarchical position. In conclusion, RLSCs may provide a useful tool to improve liver stem cell knowledge and to assess new therapeutic approaches for liver diseases.
KW - Animals; Animals
KW - Cultured; Chondrocytes; Gene Expression Profiling; Hepatocytes; Immunophenotyping; Liver; Mice; Multipotent Stem Cells; Neurons; Oligonucleotide Array Sequence Analysis; Osteoblasts; Phenotype; Molecular Biology; Cell Biology
KW - Newborn; Cell Differentiation; Cell Lineage; Cell Separation; Cells
KW - Animals; Animals
KW - Cultured; Chondrocytes; Gene Expression Profiling; Hepatocytes; Immunophenotyping; Liver; Mice; Multipotent Stem Cells; Neurons; Oligonucleotide Array Sequence Analysis; Osteoblasts; Phenotype; Molecular Biology; Cell Biology
KW - Newborn; Cell Differentiation; Cell Lineage; Cell Separation; Cells
UR - http://hdl.handle.net/10447/241697
M3 - Article
VL - 15
SP - 123
EP - 133
JO - Cell Death and Differentiation
JF - Cell Death and Differentiation
SN - 1350-9047
ER -