TY - JOUR
T1 - Irreversible inhibition of epidermal growth factor receptor activity by 3-aminopropanamides.
AU - Aiello, Stefania
AU - Carmi, Caterina
AU - Rivara, Silvia
AU - Galvani, Elena
AU - Russo, Simonetta
AU - Ardizzoni, Andrea
AU - Lodola, Alessio
AU - Cavazzoni, Andrea
AU - Petronini, Pier Giorgio
AU - Mor, Marco
AU - Alfieri, Roberta R.
AU - Costantino, Gabriele
AU - Bordi, Fabrizio
AU - Vacondio, Federica
PY - 2012
Y1 - 2012
N2 - Irreversible epidermal growth factor receptor (EGFR) inhibitors contain a reactive warhead which covalently interacts with a conserved cysteine residue in the kinase domain. The acrylamide fragment, a commonly employed warhead, effectively alkylates Cys797 of EGFR, but its reactivity can cause rapid metabolic deactivation or nonspecific reactions with off-targets. We describe here a new series of irreversible inhibitors containing a 3-aminopropanamide linked in position 6 to 4-anilinoquinazoline or 4-anilinoquinoline-3-carbonitrile driving portions. Some of these compounds proved to be as efficient as their acrylamide analogues in inhibiting EGFR-TK (TK = tyrosine kinase) autophosphorylation in A549 lung cancer cells. Moreover, several 3-aminopropanamides suppressed proliferation of gefitinib-resistant H1975 cells, harboring the T790M mutation in EGFR, at significantly lower concentrations than did gefitinib. A prototypical compound, N-(4-(3-bromoanilino)quinazolin-6-yl)-3-(dimethylamino)propanamide (5), did not show covalent binding to cell-free EGFR-TK in a fluorescence assay, while it underwent selective activation in the intracellular environment, releasing an acrylamide derivative which can react with thiol groups.
AB - Irreversible epidermal growth factor receptor (EGFR) inhibitors contain a reactive warhead which covalently interacts with a conserved cysteine residue in the kinase domain. The acrylamide fragment, a commonly employed warhead, effectively alkylates Cys797 of EGFR, but its reactivity can cause rapid metabolic deactivation or nonspecific reactions with off-targets. We describe here a new series of irreversible inhibitors containing a 3-aminopropanamide linked in position 6 to 4-anilinoquinazoline or 4-anilinoquinoline-3-carbonitrile driving portions. Some of these compounds proved to be as efficient as their acrylamide analogues in inhibiting EGFR-TK (TK = tyrosine kinase) autophosphorylation in A549 lung cancer cells. Moreover, several 3-aminopropanamides suppressed proliferation of gefitinib-resistant H1975 cells, harboring the T790M mutation in EGFR, at significantly lower concentrations than did gefitinib. A prototypical compound, N-(4-(3-bromoanilino)quinazolin-6-yl)-3-(dimethylamino)propanamide (5), did not show covalent binding to cell-free EGFR-TK in a fluorescence assay, while it underwent selective activation in the intracellular environment, releasing an acrylamide derivative which can react with thiol groups.
UR - http://hdl.handle.net/10447/62772
M3 - Article
VL - 55
SP - 2251
EP - 2264
JO - Journal of Medicinal Chemistry
JF - Journal of Medicinal Chemistry
SN - 0022-2623
ER -