Irreducible components of Hurwitz spaces parameterizing Galois coverings of curves of positive genus

Risultato della ricerca: Articlepeer review

1 Citazioni (Scopus)

Abstract

Given a smooth, projective curve Y of genus g>=1 and a finite group G, let H^G_n(Y) be the Hurwitz space which parameterizes the G-equivalence classes of G-coverings of Y branched in n points. This space is a finite e'tale covering of Y^{(n)}\setminus \Delta, where \Delta is the big diagonal. In this paper we calculate explicitly themonodromy of this covering. This is an extension to curves of positive genus of a well known result in the case of Y = P^1, and may be used for determining the irreducible components of H^G_n(Y) in particular cases.
Lingua originaleEnglish
pagine (da-a)193-222
Numero di pagine30
RivistaPure and Applied Mathematics Quarterly
Volume10
Stato di pubblicazionePublished - 2014

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2600???

Fingerprint

Entra nei temi di ricerca di 'Irreducible components of Hurwitz spaces parameterizing Galois coverings of curves of positive genus'. Insieme formano una fingerprint unica.

Cita questo