Innovative Recycling of Lime Slaker Grits from Paper-Pulp Industry Reused as Aggregate in Ambient Cured Biomass Fly Ash-Based Geopolymers for Sustainable Construction Material

Manfredi Saeli, Giada La Scalia, David Maria Tobaldi, Manfredi Saeli, Luciano Senff, João Antonio Labrincha, Maria Paula Seabra

Risultato della ricerca: Article

Abstract

Lime slaker grits and biomass fly ash are solid wastes produced by the Kraft paper-pulp industry that are commonly disposed of in landfill. However, recent studies and European regulations discourage such disposal practices. This work investigates an alternative and innovative way to recycle and reuse these wastes in the production of green geopolymeric mortars intended for application in the construction industry. Here, biomass fly ash was used as the main source of alumino-silicate in the binder precursor (70 wt.% substitution to metakaolin), and grits (ranging from 1-12.5 mm, as provided by the industry) were reused as aggregate. Aggregate granulometry was also completed by using a commercial natural siliceous sand (<1 mm). Mortars using sand only were prepared for comparative reasons. The implemented mix was designed to investigate the influence of the grits on the mortar's properties such as its binder/aggregate ratio, workability, bulk density, water sorptivity, and compressive strength. At the same time, waste reuse was analysed in light of its limitations and potentialities. Moreover, in the pursuit of sustainability, the manufacturing process that was followed was highly cost-effective in ambient curing conditions (20 degrees C, 65% RH), which avoided the use of any external source of energy as commonly used in geopolymers processing. The achieved results proved that the combined use of these wastes, which to date has hardly been explored, along with ambient manufacturing conditions increases the material sustainability. The produced mortars are suitable for innovative applications in various fields, with a particular focus on construction and contribute to the circular economy.
Lingua originaleEnglish
Numero di pagine15
RivistaSustainability
Volume11
Stato di pubblicazionePublished - 2019

Fingerprint

Geopolymers
paper industry
Paper and pulp industry
mortar
recycling
Mortar
Fly ash
Lime
fly ash
lime
Recycling
Biomass
biomass
manufacturing conditions
Binders
Sustainable development
manufacturing
Sand
sustainability
Kraft paper

All Science Journal Classification (ASJC) codes

  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Management, Monitoring, Policy and Law

Cita questo

Innovative Recycling of Lime Slaker Grits from Paper-Pulp Industry Reused as Aggregate in Ambient Cured Biomass Fly Ash-Based Geopolymers for Sustainable Construction Material. / Saeli, Manfredi; La Scalia, Giada; Tobaldi, David Maria; Saeli, Manfredi; Senff, Luciano; Labrincha, João Antonio; Seabra, Maria Paula.

In: Sustainability, Vol. 11, 2019.

Risultato della ricerca: Article

@article{2f3113a2235e43b88a141a9acf235170,
title = "Innovative Recycling of Lime Slaker Grits from Paper-Pulp Industry Reused as Aggregate in Ambient Cured Biomass Fly Ash-Based Geopolymers for Sustainable Construction Material",
abstract = "Lime slaker grits and biomass fly ash are solid wastes produced by the Kraft paper-pulp industry that are commonly disposed of in landfill. However, recent studies and European regulations discourage such disposal practices. This work investigates an alternative and innovative way to recycle and reuse these wastes in the production of green geopolymeric mortars intended for application in the construction industry. Here, biomass fly ash was used as the main source of alumino-silicate in the binder precursor (70 wt.{\%} substitution to metakaolin), and grits (ranging from 1-12.5 mm, as provided by the industry) were reused as aggregate. Aggregate granulometry was also completed by using a commercial natural siliceous sand (<1 mm). Mortars using sand only were prepared for comparative reasons. The implemented mix was designed to investigate the influence of the grits on the mortar's properties such as its binder/aggregate ratio, workability, bulk density, water sorptivity, and compressive strength. At the same time, waste reuse was analysed in light of its limitations and potentialities. Moreover, in the pursuit of sustainability, the manufacturing process that was followed was highly cost-effective in ambient curing conditions (20 degrees C, 65{\%} RH), which avoided the use of any external source of energy as commonly used in geopolymers processing. The achieved results proved that the combined use of these wastes, which to date has hardly been explored, along with ambient manufacturing conditions increases the material sustainability. The produced mortars are suitable for innovative applications in various fields, with a particular focus on construction and contribute to the circular economy.",
keywords = "biomass fly ash, construction, geopolymer concrete, lime slaker grits, paper-pulp industry, recycling",
author = "Manfredi Saeli and {La Scalia}, Giada and Tobaldi, {David Maria} and Manfredi Saeli and Luciano Senff and Labrincha, {Jo{\~a}o Antonio} and Seabra, {Maria Paula}",
year = "2019",
language = "English",
volume = "11",
journal = "Sustainability",
issn = "2071-1050",
publisher = "MDPI AG",

}

TY - JOUR

T1 - Innovative Recycling of Lime Slaker Grits from Paper-Pulp Industry Reused as Aggregate in Ambient Cured Biomass Fly Ash-Based Geopolymers for Sustainable Construction Material

AU - Saeli, Manfredi

AU - La Scalia, Giada

AU - Tobaldi, David Maria

AU - Saeli, Manfredi

AU - Senff, Luciano

AU - Labrincha, João Antonio

AU - Seabra, Maria Paula

PY - 2019

Y1 - 2019

N2 - Lime slaker grits and biomass fly ash are solid wastes produced by the Kraft paper-pulp industry that are commonly disposed of in landfill. However, recent studies and European regulations discourage such disposal practices. This work investigates an alternative and innovative way to recycle and reuse these wastes in the production of green geopolymeric mortars intended for application in the construction industry. Here, biomass fly ash was used as the main source of alumino-silicate in the binder precursor (70 wt.% substitution to metakaolin), and grits (ranging from 1-12.5 mm, as provided by the industry) were reused as aggregate. Aggregate granulometry was also completed by using a commercial natural siliceous sand (<1 mm). Mortars using sand only were prepared for comparative reasons. The implemented mix was designed to investigate the influence of the grits on the mortar's properties such as its binder/aggregate ratio, workability, bulk density, water sorptivity, and compressive strength. At the same time, waste reuse was analysed in light of its limitations and potentialities. Moreover, in the pursuit of sustainability, the manufacturing process that was followed was highly cost-effective in ambient curing conditions (20 degrees C, 65% RH), which avoided the use of any external source of energy as commonly used in geopolymers processing. The achieved results proved that the combined use of these wastes, which to date has hardly been explored, along with ambient manufacturing conditions increases the material sustainability. The produced mortars are suitable for innovative applications in various fields, with a particular focus on construction and contribute to the circular economy.

AB - Lime slaker grits and biomass fly ash are solid wastes produced by the Kraft paper-pulp industry that are commonly disposed of in landfill. However, recent studies and European regulations discourage such disposal practices. This work investigates an alternative and innovative way to recycle and reuse these wastes in the production of green geopolymeric mortars intended for application in the construction industry. Here, biomass fly ash was used as the main source of alumino-silicate in the binder precursor (70 wt.% substitution to metakaolin), and grits (ranging from 1-12.5 mm, as provided by the industry) were reused as aggregate. Aggregate granulometry was also completed by using a commercial natural siliceous sand (<1 mm). Mortars using sand only were prepared for comparative reasons. The implemented mix was designed to investigate the influence of the grits on the mortar's properties such as its binder/aggregate ratio, workability, bulk density, water sorptivity, and compressive strength. At the same time, waste reuse was analysed in light of its limitations and potentialities. Moreover, in the pursuit of sustainability, the manufacturing process that was followed was highly cost-effective in ambient curing conditions (20 degrees C, 65% RH), which avoided the use of any external source of energy as commonly used in geopolymers processing. The achieved results proved that the combined use of these wastes, which to date has hardly been explored, along with ambient manufacturing conditions increases the material sustainability. The produced mortars are suitable for innovative applications in various fields, with a particular focus on construction and contribute to the circular economy.

KW - biomass fly ash

KW - construction

KW - geopolymer concrete

KW - lime slaker grits

KW - paper-pulp industry

KW - recycling

UR - http://hdl.handle.net/10447/369123

M3 - Article

VL - 11

JO - Sustainability

JF - Sustainability

SN - 2071-1050

ER -