Inhibitory purinergic transmission in mouse caecum: Role for P2Y1 receptors as prejunctional modulators of ATP release

Risultato della ricerca: Article

24 Citazioni (Scopus)

Abstract

Using conventional microelectrode recording techniques, we investigated, in the circular muscle of the mouse caecum, the neurotransmitter(s) involved in the neurally-evoked inhibitory junction potentials (IJPs) and the existence of possible prejunctional mechanisms controlling neurotransmitter release. Electrical field stimulation with single pulses elicited IJPs, consisting only of a "fast" hyperpolarization, while using train stimuli (30-50 Hz) the initial fast hyperpolarization was followed by a slower hyperpolarization. The fast and the slow component were selectively antagonized by apamin, a blocker of calcium-activated potassium channels, and N(omega)-nitro-l-arginine methyl ester (l-NAME), a nitric oxide synthase inhibitor, respectively. Fast IJPs were antagonized also by P2 purinoceptor antagonists, suramin or 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzenedisulfonic acid tetrasodium salt (PPADS), P2Y purinoceptor desensitization by adenosine 5'-O-2-thiodiphosphate (ADPbetaS). 2'-Deoxy-N(6)-methyl ADP diammonium salt (MRS 2179), P2Y1 purinoceptor antagonist, at the concentration of 1 microM increased the amplitude of the fast IJP, while at the concentration of 10 microM induced a reduction. 8,8'-[Carbonylbis[imino-3,1-phenylenecarbonylimino (4-fluoro-3,1-phenylene) carbonylimino]] bis-1,3,5-naphthalenetrisulfonic acid hexasodium salt (NF 157) and 2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyl-oxymethyl)-propyl ester (MRS 2395), P2Y11 and P2Y12 purinoceptor antagonist, were without any effect. ATP-induced hyperpolarization was affected by apamin and by P2Y purinoceptor desensitization, but not by MRS 2179. 2-(Methylthio)ATP tetrasodium salt hydrate (2-MeSATP), P2Y1 purinoceptor agonist, at a concentration which did not cause changes in the membrane potential, reduced the amplitude of the fast IJPs. This effect was prevented by MRS 2179. Paired nerve stimulation, either using single pulses or train stimuli, did not cause any alteration of the second-evoked IJP. In conclusion, in the circular muscle of the mouse caecum, ATP is responsible for the fast IJP while nitric oxide is responsible for the slow IJP. ATP-mediated response is dependent on ADPbetaS-sensitive P2Y receptors, which are in part P2Y1, but not P2Y11 or P2Y12 receptor subtypes. In addition, the most substantial finding of this study is the functional demonstration that ATP released by nerve stimulation activates P2Y1 receptors, located prejunctionally, limiting its release by motoneurons.
Lingua originaleEnglish
pagine (da-a)658-664
Numero di pagine7
RivistaNeuroscience
Volume150(3)
Stato di pubblicazionePublished - 2007

Fingerprint

Purinergic P2Y1 Receptors
Purinergic P2Y Receptor Antagonists
Purinergic P2Y Receptors
Salts
Adenosine Triphosphate
Apamin
Purinergic P2Y Receptor Agonists
Neurotransmitter Agents
Purinergic P2 Receptor Antagonists
Calcium-Activated Potassium Channels
Suramin
Muscles
Microelectrodes
Motor Neurons
Nitric Oxide Synthase
Membrane Potentials
Adenosine Diphosphate
Electric Stimulation
Nitric Oxide
Esters

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Cita questo

@article{7ae3ecb25bdd4fba95334b1b6fbaab7a,
title = "Inhibitory purinergic transmission in mouse caecum: Role for P2Y1 receptors as prejunctional modulators of ATP release",
abstract = "Using conventional microelectrode recording techniques, we investigated, in the circular muscle of the mouse caecum, the neurotransmitter(s) involved in the neurally-evoked inhibitory junction potentials (IJPs) and the existence of possible prejunctional mechanisms controlling neurotransmitter release. Electrical field stimulation with single pulses elicited IJPs, consisting only of a {"}fast{"} hyperpolarization, while using train stimuli (30-50 Hz) the initial fast hyperpolarization was followed by a slower hyperpolarization. The fast and the slow component were selectively antagonized by apamin, a blocker of calcium-activated potassium channels, and N(omega)-nitro-l-arginine methyl ester (l-NAME), a nitric oxide synthase inhibitor, respectively. Fast IJPs were antagonized also by P2 purinoceptor antagonists, suramin or 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzenedisulfonic acid tetrasodium salt (PPADS), P2Y purinoceptor desensitization by adenosine 5'-O-2-thiodiphosphate (ADPbetaS). 2'-Deoxy-N(6)-methyl ADP diammonium salt (MRS 2179), P2Y1 purinoceptor antagonist, at the concentration of 1 microM increased the amplitude of the fast IJP, while at the concentration of 10 microM induced a reduction. 8,8'-[Carbonylbis[imino-3,1-phenylenecarbonylimino (4-fluoro-3,1-phenylene) carbonylimino]] bis-1,3,5-naphthalenetrisulfonic acid hexasodium salt (NF 157) and 2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyl-oxymethyl)-propyl ester (MRS 2395), P2Y11 and P2Y12 purinoceptor antagonist, were without any effect. ATP-induced hyperpolarization was affected by apamin and by P2Y purinoceptor desensitization, but not by MRS 2179. 2-(Methylthio)ATP tetrasodium salt hydrate (2-MeSATP), P2Y1 purinoceptor agonist, at a concentration which did not cause changes in the membrane potential, reduced the amplitude of the fast IJPs. This effect was prevented by MRS 2179. Paired nerve stimulation, either using single pulses or train stimuli, did not cause any alteration of the second-evoked IJP. In conclusion, in the circular muscle of the mouse caecum, ATP is responsible for the fast IJP while nitric oxide is responsible for the slow IJP. ATP-mediated response is dependent on ADPbetaS-sensitive P2Y receptors, which are in part P2Y1, but not P2Y11 or P2Y12 receptor subtypes. In addition, the most substantial finding of this study is the functional demonstration that ATP released by nerve stimulation activates P2Y1 receptors, located prejunctionally, limiting its release by motoneurons.",
keywords = "ATP, enteric nerves, inhibitory junction potentials, intestinal muscle, purinergic receptors",
author = "Flavia Mule' and Zizzo, {Maria Grazia} and Serio, {Rosa Maria}",
year = "2007",
language = "English",
volume = "150(3)",
pages = "658--664",
journal = "Neuroscience",
issn = "0306-4522",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Inhibitory purinergic transmission in mouse caecum: Role for P2Y1 receptors as prejunctional modulators of ATP release

AU - Mule', Flavia

AU - Zizzo, Maria Grazia

AU - Serio, Rosa Maria

PY - 2007

Y1 - 2007

N2 - Using conventional microelectrode recording techniques, we investigated, in the circular muscle of the mouse caecum, the neurotransmitter(s) involved in the neurally-evoked inhibitory junction potentials (IJPs) and the existence of possible prejunctional mechanisms controlling neurotransmitter release. Electrical field stimulation with single pulses elicited IJPs, consisting only of a "fast" hyperpolarization, while using train stimuli (30-50 Hz) the initial fast hyperpolarization was followed by a slower hyperpolarization. The fast and the slow component were selectively antagonized by apamin, a blocker of calcium-activated potassium channels, and N(omega)-nitro-l-arginine methyl ester (l-NAME), a nitric oxide synthase inhibitor, respectively. Fast IJPs were antagonized also by P2 purinoceptor antagonists, suramin or 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzenedisulfonic acid tetrasodium salt (PPADS), P2Y purinoceptor desensitization by adenosine 5'-O-2-thiodiphosphate (ADPbetaS). 2'-Deoxy-N(6)-methyl ADP diammonium salt (MRS 2179), P2Y1 purinoceptor antagonist, at the concentration of 1 microM increased the amplitude of the fast IJP, while at the concentration of 10 microM induced a reduction. 8,8'-[Carbonylbis[imino-3,1-phenylenecarbonylimino (4-fluoro-3,1-phenylene) carbonylimino]] bis-1,3,5-naphthalenetrisulfonic acid hexasodium salt (NF 157) and 2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyl-oxymethyl)-propyl ester (MRS 2395), P2Y11 and P2Y12 purinoceptor antagonist, were without any effect. ATP-induced hyperpolarization was affected by apamin and by P2Y purinoceptor desensitization, but not by MRS 2179. 2-(Methylthio)ATP tetrasodium salt hydrate (2-MeSATP), P2Y1 purinoceptor agonist, at a concentration which did not cause changes in the membrane potential, reduced the amplitude of the fast IJPs. This effect was prevented by MRS 2179. Paired nerve stimulation, either using single pulses or train stimuli, did not cause any alteration of the second-evoked IJP. In conclusion, in the circular muscle of the mouse caecum, ATP is responsible for the fast IJP while nitric oxide is responsible for the slow IJP. ATP-mediated response is dependent on ADPbetaS-sensitive P2Y receptors, which are in part P2Y1, but not P2Y11 or P2Y12 receptor subtypes. In addition, the most substantial finding of this study is the functional demonstration that ATP released by nerve stimulation activates P2Y1 receptors, located prejunctionally, limiting its release by motoneurons.

AB - Using conventional microelectrode recording techniques, we investigated, in the circular muscle of the mouse caecum, the neurotransmitter(s) involved in the neurally-evoked inhibitory junction potentials (IJPs) and the existence of possible prejunctional mechanisms controlling neurotransmitter release. Electrical field stimulation with single pulses elicited IJPs, consisting only of a "fast" hyperpolarization, while using train stimuli (30-50 Hz) the initial fast hyperpolarization was followed by a slower hyperpolarization. The fast and the slow component were selectively antagonized by apamin, a blocker of calcium-activated potassium channels, and N(omega)-nitro-l-arginine methyl ester (l-NAME), a nitric oxide synthase inhibitor, respectively. Fast IJPs were antagonized also by P2 purinoceptor antagonists, suramin or 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzenedisulfonic acid tetrasodium salt (PPADS), P2Y purinoceptor desensitization by adenosine 5'-O-2-thiodiphosphate (ADPbetaS). 2'-Deoxy-N(6)-methyl ADP diammonium salt (MRS 2179), P2Y1 purinoceptor antagonist, at the concentration of 1 microM increased the amplitude of the fast IJP, while at the concentration of 10 microM induced a reduction. 8,8'-[Carbonylbis[imino-3,1-phenylenecarbonylimino (4-fluoro-3,1-phenylene) carbonylimino]] bis-1,3,5-naphthalenetrisulfonic acid hexasodium salt (NF 157) and 2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyl-oxymethyl)-propyl ester (MRS 2395), P2Y11 and P2Y12 purinoceptor antagonist, were without any effect. ATP-induced hyperpolarization was affected by apamin and by P2Y purinoceptor desensitization, but not by MRS 2179. 2-(Methylthio)ATP tetrasodium salt hydrate (2-MeSATP), P2Y1 purinoceptor agonist, at a concentration which did not cause changes in the membrane potential, reduced the amplitude of the fast IJPs. This effect was prevented by MRS 2179. Paired nerve stimulation, either using single pulses or train stimuli, did not cause any alteration of the second-evoked IJP. In conclusion, in the circular muscle of the mouse caecum, ATP is responsible for the fast IJP while nitric oxide is responsible for the slow IJP. ATP-mediated response is dependent on ADPbetaS-sensitive P2Y receptors, which are in part P2Y1, but not P2Y11 or P2Y12 receptor subtypes. In addition, the most substantial finding of this study is the functional demonstration that ATP released by nerve stimulation activates P2Y1 receptors, located prejunctionally, limiting its release by motoneurons.

KW - ATP

KW - enteric nerves

KW - inhibitory junction potentials

KW - intestinal muscle

KW - purinergic receptors

UR - http://hdl.handle.net/10447/23733

M3 - Article

VL - 150(3)

SP - 658

EP - 664

JO - Neuroscience

JF - Neuroscience

SN - 0306-4522

ER -