IMPROVED STABILITY OF GRAPHENE OXIDE-SILICA NANOHYBRIDS AND RELATED POLYMER-BASED NANOCOMPOSITES

Piazza, A

Risultato della ricerca: Paper

Abstract

Although its promising properties make the graphene oxide (GO) very interesting as filler for polymer matrices, some problems related to its thermal stability in the region which ranges from 80 to 200 °C, are crucial for the possibility to melt process GO together with practically all the polymers [1,2]. Moreover, above 100 °C GO lamellae were found to become stacked. In this work, two different ways to preserve the GO structure and ensure its dispersion within different polymer matrices have been investigated and schematized in Fig. 1. Exfoliation plays a key-role in the achievement of good mechanical properties since it preserves the GO from both stacking phenomena. The capability of silica to exfoliate the GO lamellae is confirmed by SEM analysis and probably this feature leads to the achievement of a better morphology in terms of exfoliation/intercalation thus resulting in a better load transfer. Moreover, the presence of silica results in an increased thermal stability of the GO, as confirmed by Raman analysis and TGA. The nanocomposites prepared by incorporating GO-silica nanohybrids within PA6, EVA and PC showed mechanical properties higher than those directly melt mixed with GO. Furthermore, the GO-silica-polymer nanocomposites were found to have mechanical performance similar or better than GO-polymer prepared via solvent casting.
Lingua originaleEnglish
Stato di pubblicazionePublished - 2014

Fingerprint

Graphite
Silicon Dioxide
Oxides
Nanocomposites
Polymers
Polymer matrix
Thermodynamic stability
Mechanical properties
Intercalation
Fillers
Casting

Cita questo

@conference{1e7bbc630c12475fb7dc5fdf0b599468,
title = "IMPROVED STABILITY OF GRAPHENE OXIDE-SILICA NANOHYBRIDS AND RELATED POLYMER-BASED NANOCOMPOSITES",
abstract = "Although its promising properties make the graphene oxide (GO) very interesting as filler for polymer matrices, some problems related to its thermal stability in the region which ranges from 80 to 200 °C, are crucial for the possibility to melt process GO together with practically all the polymers [1,2]. Moreover, above 100 °C GO lamellae were found to become stacked. In this work, two different ways to preserve the GO structure and ensure its dispersion within different polymer matrices have been investigated and schematized in Fig. 1. Exfoliation plays a key-role in the achievement of good mechanical properties since it preserves the GO from both stacking phenomena. The capability of silica to exfoliate the GO lamellae is confirmed by SEM analysis and probably this feature leads to the achievement of a better morphology in terms of exfoliation/intercalation thus resulting in a better load transfer. Moreover, the presence of silica results in an increased thermal stability of the GO, as confirmed by Raman analysis and TGA. The nanocomposites prepared by incorporating GO-silica nanohybrids within PA6, EVA and PC showed mechanical properties higher than those directly melt mixed with GO. Furthermore, the GO-silica-polymer nanocomposites were found to have mechanical performance similar or better than GO-polymer prepared via solvent casting.",
author = "{Piazza, A} and Roberto Scaffaro and Andrea Maio and Simonpietro Agnello and Gianpiero Buscarino and Luigi Botta and Reza Khatibi",
year = "2014",
language = "English",

}

TY - CONF

T1 - IMPROVED STABILITY OF GRAPHENE OXIDE-SILICA NANOHYBRIDS AND RELATED POLYMER-BASED NANOCOMPOSITES

AU - Piazza, A

AU - Scaffaro, Roberto

AU - Maio, Andrea

AU - Agnello, Simonpietro

AU - Buscarino, Gianpiero

AU - Botta, Luigi

AU - Khatibi, Reza

PY - 2014

Y1 - 2014

N2 - Although its promising properties make the graphene oxide (GO) very interesting as filler for polymer matrices, some problems related to its thermal stability in the region which ranges from 80 to 200 °C, are crucial for the possibility to melt process GO together with practically all the polymers [1,2]. Moreover, above 100 °C GO lamellae were found to become stacked. In this work, two different ways to preserve the GO structure and ensure its dispersion within different polymer matrices have been investigated and schematized in Fig. 1. Exfoliation plays a key-role in the achievement of good mechanical properties since it preserves the GO from both stacking phenomena. The capability of silica to exfoliate the GO lamellae is confirmed by SEM analysis and probably this feature leads to the achievement of a better morphology in terms of exfoliation/intercalation thus resulting in a better load transfer. Moreover, the presence of silica results in an increased thermal stability of the GO, as confirmed by Raman analysis and TGA. The nanocomposites prepared by incorporating GO-silica nanohybrids within PA6, EVA and PC showed mechanical properties higher than those directly melt mixed with GO. Furthermore, the GO-silica-polymer nanocomposites were found to have mechanical performance similar or better than GO-polymer prepared via solvent casting.

AB - Although its promising properties make the graphene oxide (GO) very interesting as filler for polymer matrices, some problems related to its thermal stability in the region which ranges from 80 to 200 °C, are crucial for the possibility to melt process GO together with practically all the polymers [1,2]. Moreover, above 100 °C GO lamellae were found to become stacked. In this work, two different ways to preserve the GO structure and ensure its dispersion within different polymer matrices have been investigated and schematized in Fig. 1. Exfoliation plays a key-role in the achievement of good mechanical properties since it preserves the GO from both stacking phenomena. The capability of silica to exfoliate the GO lamellae is confirmed by SEM analysis and probably this feature leads to the achievement of a better morphology in terms of exfoliation/intercalation thus resulting in a better load transfer. Moreover, the presence of silica results in an increased thermal stability of the GO, as confirmed by Raman analysis and TGA. The nanocomposites prepared by incorporating GO-silica nanohybrids within PA6, EVA and PC showed mechanical properties higher than those directly melt mixed with GO. Furthermore, the GO-silica-polymer nanocomposites were found to have mechanical performance similar or better than GO-polymer prepared via solvent casting.

UR - http://hdl.handle.net/10447/100127

M3 - Paper

ER -