Impact of Ag and Co engineered nanoparticles on soil microbial community structure in a soil perturbed by Lumbricus rubellus

Risultato della ricerca: Other

Abstract

Knowledge on the impact of engineered nanomaterials (ENMs) on both human and environment health is scarce. Several studies sustain that soil is the environmental compartment designed to be the major recipient of engineered nanoparticles (NPs). With the aim of investigating the impact of commerciallyrelevant NPs on soil functioning, we compared the effect of Ag and Co NPs, as well as cobalt and silver ions, on soil microbial community in the presence of Lumbricus rubellus. Earthworms specimens were placed in a rich‐C soil and fed with horse manure spiked with Ag‐NPs, Co‐NPs, Ag+ and Co2+ for a total amount of 10 mg of single pollutant kg‐1 soil. At the end of acute exposure (4 weeks) to pollutants, the following analyses were performed: soil metal contents, soil microbial biomass C (MBC) and nitrogen (MBN) , basal respiration, specific respiration (qCO2), phospholipid fatty acids (PLFAs). The pollutantsintroduced with the food in the soil‐earthworm system affected the microbial activity increasing basal respiration and qCO2, while MBC and MBN content decreased. PLFAs of soil were affected by both pollutant NPS and ions supplied. The fatty acids significantly affected by treatments were C18:17 and C18:26,9 in soil. These results suggested that NPs could induce stress on soil microorganisms.
Lingua originaleEnglish
Pagine27-27
Numero di pagine1
Stato di pubblicazionePublished - 2014

Fingerprint

microbial community
community structure
soil
respiration
fatty acid
phospholipid
nanoparticle
ion
pollutant
nitrogen
soil microorganism
biomass
horse
earthworm
cobalt
microbial activity
manure
silver
food
metal

Cita questo

@conference{adef1be0900b484883a480673c38ce4a,
title = "Impact of Ag and Co engineered nanoparticles on soil microbial community structure in a soil perturbed by Lumbricus rubellus",
abstract = "Knowledge on the impact of engineered nanomaterials (ENMs) on both human and environment health is scarce. Several studies sustain that soil is the environmental compartment designed to be the major recipient of engineered nanoparticles (NPs). With the aim of investigating the impact of commerciallyrelevant NPs on soil functioning, we compared the effect of Ag and Co NPs, as well as cobalt and silver ions, on soil microbial community in the presence of Lumbricus rubellus. Earthworms specimens were placed in a rich‐C soil and fed with horse manure spiked with Ag‐NPs, Co‐NPs, Ag+ and Co2+ for a total amount of 10 mg of single pollutant kg‐1 soil. At the end of acute exposure (4 weeks) to pollutants, the following analyses were performed: soil metal contents, soil microbial biomass C (MBC) and nitrogen (MBN) , basal respiration, specific respiration (qCO2), phospholipid fatty acids (PLFAs). The pollutantsintroduced with the food in the soil‐earthworm system affected the microbial activity increasing basal respiration and qCO2, while MBC and MBN content decreased. PLFAs of soil were affected by both pollutant NPS and ions supplied. The fatty acids significantly affected by treatments were C18:17 and C18:26,9 in soil. These results suggested that NPs could induce stress on soil microorganisms.",
author = "Luigi Badalucco and Laudicina, {Vito Armando}",
year = "2014",
language = "English",
pages = "27--27",

}

TY - CONF

T1 - Impact of Ag and Co engineered nanoparticles on soil microbial community structure in a soil perturbed by Lumbricus rubellus

AU - Badalucco, Luigi

AU - Laudicina, Vito Armando

PY - 2014

Y1 - 2014

N2 - Knowledge on the impact of engineered nanomaterials (ENMs) on both human and environment health is scarce. Several studies sustain that soil is the environmental compartment designed to be the major recipient of engineered nanoparticles (NPs). With the aim of investigating the impact of commerciallyrelevant NPs on soil functioning, we compared the effect of Ag and Co NPs, as well as cobalt and silver ions, on soil microbial community in the presence of Lumbricus rubellus. Earthworms specimens were placed in a rich‐C soil and fed with horse manure spiked with Ag‐NPs, Co‐NPs, Ag+ and Co2+ for a total amount of 10 mg of single pollutant kg‐1 soil. At the end of acute exposure (4 weeks) to pollutants, the following analyses were performed: soil metal contents, soil microbial biomass C (MBC) and nitrogen (MBN) , basal respiration, specific respiration (qCO2), phospholipid fatty acids (PLFAs). The pollutantsintroduced with the food in the soil‐earthworm system affected the microbial activity increasing basal respiration and qCO2, while MBC and MBN content decreased. PLFAs of soil were affected by both pollutant NPS and ions supplied. The fatty acids significantly affected by treatments were C18:17 and C18:26,9 in soil. These results suggested that NPs could induce stress on soil microorganisms.

AB - Knowledge on the impact of engineered nanomaterials (ENMs) on both human and environment health is scarce. Several studies sustain that soil is the environmental compartment designed to be the major recipient of engineered nanoparticles (NPs). With the aim of investigating the impact of commerciallyrelevant NPs on soil functioning, we compared the effect of Ag and Co NPs, as well as cobalt and silver ions, on soil microbial community in the presence of Lumbricus rubellus. Earthworms specimens were placed in a rich‐C soil and fed with horse manure spiked with Ag‐NPs, Co‐NPs, Ag+ and Co2+ for a total amount of 10 mg of single pollutant kg‐1 soil. At the end of acute exposure (4 weeks) to pollutants, the following analyses were performed: soil metal contents, soil microbial biomass C (MBC) and nitrogen (MBN) , basal respiration, specific respiration (qCO2), phospholipid fatty acids (PLFAs). The pollutantsintroduced with the food in the soil‐earthworm system affected the microbial activity increasing basal respiration and qCO2, while MBC and MBN content decreased. PLFAs of soil were affected by both pollutant NPS and ions supplied. The fatty acids significantly affected by treatments were C18:17 and C18:26,9 in soil. These results suggested that NPs could induce stress on soil microorganisms.

UR - http://hdl.handle.net/10447/99774

M3 - Other

SP - 27

EP - 27

ER -