Identities of *-superalgebras and almost polynomial growth

Antonino Giambruno, Rafael Bezerra Dos Santos, Ana Cristina Vieira

Risultato della ricerca: Article

11 Citazioni (Scopus)

Abstract

We study the growth of the codimensions of a *-superalgebra over a field of characteristic zero. We classify the ideals of identities of finite dimensional algebras whose corresponding codimensions are of almost polynomial growth. It turns out that these are the ideals of identities of two algebras with distinct involutions and gradings. Along the way, we also classify the finite dimensional simple *-superalgebras over an algebraically closed field of characteristic zero.
Lingua originaleEnglish
pagine (da-a)484-501
Numero di pagine18
RivistaLINEAR & MULTILINEAR ALGEBRA
Volume64
Stato di pubblicazionePublished - 2016

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

Cita questo