TY - JOUR
T1 - Hydrodynamic modelling of accretion impacts in classical T Tauri stars: Radiative heating of the pre-shock plasma
AU - Bonito, Rosaria
AU - Peres, Giovanni
AU - Argiroffi, Costanza
AU - Costa, null
AU - Argiroffi, null
AU - Orlando, null
AU - Peres, Giovanni
AU - Bonito, null
PY - 2017
Y1 - 2017
N2 - Context. It is generally accepted that, in classical T Tauri stars, the plasma from the circumstellar disc accretes onto the stellar surface with free-fall velocity and the impact generates a shock. The impact region is expected to contribute to emission in different spectral bands; many studies have confirmed that the X-rays arise from the post-shock plasma but, otherwise, there are no studies in the literature investigating the origin of the observed UV emission which is apparently correlated to accretion. Aims. We investigated the effect of radiative heating of the infalling material by the post-shock plasma at the base of the accretion stream, with the aim to identify in which region a significant part of the UV emission originates. Methods. We developed a one-dimensional hydrodynamic model describing the impact of an accretion stream onto the stellar surface; the model takes into account the gravity, the radiative cooling of an optically thin plasma, the thermal conduction, and the heating due to absorption of X-ray radiation. The latter term represents the heating of the infalling plasma due to the absorption of X-rays emitted from the post-shock region. Results. We found that the radiative heating of the pre-shock plasma plays a non-negligible role in the accretion phenomenon. In particular, the dense and cold plasma of the pre-shock accretion column is gradually heated up to a few 105K due to irradiation of X-rays arising from the shocked plasma at the impact region. This heating mechanism does not affect significantly the dynamics of the post-shock plasma. On the other hand, a region of radiatively heated gas (that we consider a precursor) forms in the unshocked accretion column and contributes significantly to UV emission. Our model naturally reproduces the luminosity of UV emission lines correlated to accretion and shows that most of the UV emission originates from the precursor.
AB - Context. It is generally accepted that, in classical T Tauri stars, the plasma from the circumstellar disc accretes onto the stellar surface with free-fall velocity and the impact generates a shock. The impact region is expected to contribute to emission in different spectral bands; many studies have confirmed that the X-rays arise from the post-shock plasma but, otherwise, there are no studies in the literature investigating the origin of the observed UV emission which is apparently correlated to accretion. Aims. We investigated the effect of radiative heating of the infalling material by the post-shock plasma at the base of the accretion stream, with the aim to identify in which region a significant part of the UV emission originates. Methods. We developed a one-dimensional hydrodynamic model describing the impact of an accretion stream onto the stellar surface; the model takes into account the gravity, the radiative cooling of an optically thin plasma, the thermal conduction, and the heating due to absorption of X-ray radiation. The latter term represents the heating of the infalling plasma due to the absorption of X-rays emitted from the post-shock region. Results. We found that the radiative heating of the pre-shock plasma plays a non-negligible role in the accretion phenomenon. In particular, the dense and cold plasma of the pre-shock accretion column is gradually heated up to a few 105K due to irradiation of X-rays arising from the shocked plasma at the impact region. This heating mechanism does not affect significantly the dynamics of the post-shock plasma. On the other hand, a region of radiatively heated gas (that we consider a precursor) forms in the unshocked accretion column and contributes significantly to UV emission. Our model naturally reproduces the luminosity of UV emission lines correlated to accretion and shows that most of the UV emission originates from the precursor.
KW - Accretion
KW - accretion disks; Hydrodynamics; Shock waves; Stars: pre-main sequence; X-rays: stars; Astronomy and Astrophysics; Space and Planetary Science
KW - Accretion
KW - accretion disks; Hydrodynamics; Shock waves; Stars: pre-main sequence; X-rays: stars; Astronomy and Astrophysics; Space and Planetary Science
UR - http://hdl.handle.net/10447/224127
UR - http://www.edpsciences.org/journal/index.cfm?edpsname=aa
M3 - Article
VL - 597
SP - A1-
JO - ASTRONOMY & ASTROPHYSICS
JF - ASTRONOMY & ASTROPHYSICS
SN - 1432-0746
ER -