Hybrid supramolecular gels of Fmoc-F/halloysite nanotubes: systems for sustained release of camptothecin

Risultato della ricerca: Articlepeer review

36 Citazioni (Scopus)

Abstract

Supramolecular gel hybrids obtained by self-assembly of Fmoc-L-phenylalanine (Fmoc-F) in the presence of functionalized halloysite nanotubes (f-HNT) were obtained in biocompatible solvents and employed as carriers for the delivery of camptothecin (CPT) molecules. The synthesis of the new f-HNT material as well as its characterization are described. The properties of the hybrid hydrogels and organogels were analyzed by several techniques. The presence of small amounts of f-HNT allows good dispersion of the tubes and the subsequent formation of homogeneous gels. The experimental results show that f-HNT functions only as an additive in the hybrid gels and does not demonstrate gelator behavior. The in vitro kinetic release from both f-HNT/CPT and Fmoc-F/f-HNT/CPT was studied in media that imitates physiological conditions, and the factors controlling the release process were determined and discussed. Furthermore, the antiproliferative in vitro activities of the gels were evaluated towards human cervical cancer HeLa cells. A comparison of data collected in both systems shows the synergistic action of f-HNT and the gel matrix in controlling the release of CPT in the media and maintaining the drug in its active form. Finally, a comparison with pristine HNT is also reported. This study suggests a suitable strategy to obtain two-component gel hybrids based on nanocarriers with controlled drug carrier capacity for biomedical applications.
Lingua originaleEnglish
pagine (da-a)3217-3229
Numero di pagine13
RivistaJOURNAL OF MATERIALS CHEMISTRY. B
Volume5
Stato di pubblicazionePublished - 2017

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.1600.1600???
  • Biomedical Engineering
  • ???subjectarea.asjc.2500.2500???

Fingerprint Entra nei temi di ricerca di 'Hybrid supramolecular gels of Fmoc-F/halloysite nanotubes: systems for sustained release of camptothecin'. Insieme formano una fingerprint unica.

Cita questo