Hölder stability for Serrin’s overdetermined problem

Giulio Ciraolo, Vincenzo Vespri, Rolando Magnanini

Risultato della ricerca: Articlepeer review

17 Citazioni (Scopus)


In a bounded domain Ω, we consider a positive solution of the problem Δu+f(u)=0 in Ω, u=0 on ∂Ω, where f:ℝ→ℝ is a locally Lipschitz continuous function. Under sufficient conditions on Ω (for instance, if Ω is convex), we show that ∂Ω is contained in a spherical annulus of radii ri<re, where re−ri≤C[uν]α∂Ω for some constants C>0 and α∈(0,1]. Here, [uν]∂Ω is the Lipschitz seminorm on ∂Ω of the normal derivative of u. This result improves to H\"older stability the logarithmic estimate obtained in [1] for Serrin's overdetermined problem. It also extends to a large class of semilinear equations the H\"older estimate obtained in [6] for the case of torsional rigidity (f≡1) by means of integral identities. The proof hinges on ideas contained in [1] and uses Carleson-type estimates and improved Harnack inequalities in cones.
Lingua originaleEnglish
pagine (da-a)1333-1345
Numero di pagine13
RivistaAnnali di Matematica Pura ed Applicata
Stato di pubblicazionePublished - 2016

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2604???


Entra nei temi di ricerca di 'Hölder stability for Serrin’s overdetermined problem'. Insieme formano una fingerprint unica.

Cita questo